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Abstract 
 
This project presents an innovative sonar-based mapping system designed to provide accurate, real-time 

water depth data that is both accessible and publicly available. The system is compact, user-friendly, and 

easily attachable to any boat. As the boat moves, it continuously records water depth and geographic 

location, enabling users to monitor depth and positioning in real-time on a map while simultaneously 

generating a detailed depth profile of the area. 

 

The collected data is automatically uploaded to a cloud-based platform, ensuring open access for users who 

require up-to-date depth information. Advanced mapping techniques and comparative analyses are then 

applied to detect anomalies, track depth changes, and identify objects resulting from natural events such as 

sediment shifts, erosion, or seasonal variations, as well as human activities like dredging or construction. 

This information also serves as a valuable resource for updating and improving the accuracy of existing 

navigational maps. 

 

By leveraging cloud technology and real-time data collection, this system enhances maritime navigation, 

supports environmental monitoring, and facilitates research. It provides a practical and powerful tool for 

boaters, researchers, and conservationists seeking to better understand and document water depth variations 

over time. 
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1 Introduction 

1.1 Project Overview  

Bathymetry is the study of underwater topography of bodies of water. The data that it provides has several 

uses. First, it is used for safe navigation by providing information about water depth and potential hazards. 

Next, it is used for studying habitats of marine life by providing a topographical map of a body of water. 

Additionally, it is used to design and construct submerged foundations for building structures on water. The 

bathymetric data is collected using echosounders. The echosounder sends sound pulses downwards and 

measures the time it takes for the pulse to reflect to the sensor. This measurement is used to calculate the 

depth. Using this sensor, we have created a depth monitoring system for use by boaters. The system consists 

of three different components. The first component is a device capable of taking bathymetric surveys of lakes 

and rivers. The second component is cloud storage. Any data collected by a boater is saved here for later use. 

The third component is an app. The app allows the boater to control the device and view the data collected. 

Each component will be discussed in greater detail later in the report. Our system will make it easy for 

boaters to monitor the depth of lakes and rivers using our depth monitoring device and app. 

 

1.2 Problem Statement 

Our project, "Design and Implementation of IoT Lake/River Real-time Depth Monitoring System," aims to 

enable boaters to conduct bathymetric surveys of lakes or rivers and leverage the survey data to enhance their 

boating experience and safety. Boaters can integrate our device onto their boats to monitor real-time depth 

and location data via our phone app and upload this data to our database. 

 

1.3 Scope 

The main purpose of our project is to create a depth monitoring system for lakes and rivers. There were 

significant challenges when developing and testing this system because of our limited access to bodies of 

water and boats during the winter season. Therefore, we chose to focus on creating a system that can function 

in our controlled testing environment while remaining adaptable for real-world deployment with minor 

modifications. 

 

Additionally, we developed features for our system that can help boaters with navigation like the hazard 

differentiation and path mapping features. However, the purpose of our project does not include offering 



Page 2 of 63 

 Price Faculty of 
Engineering 

navigational services. Improvements to our system, like offering navigational services, are discussed in 

future recommendations. The core purpose of this project is to develop a real-time depth monitoring system 

that functions both locally and remotely while providing access to pre-mapped routes with data analyzes for 

hazard and safe route prediction. Additionally, the system enables device control through a dedicated app, 

facilitating in-depth analysis of lakes and rivers. 

 

1.4 Project Specifications 

Table 2 Performance Metrics 

Component / 

Feature  
Specific Field  

Proposed 

Target  
Outcome  

Sensor  
Minimum depth (Civil Lab validation) 0.3 m  0.379 m 

Maximum depth (Pool validation) 100 m  3.69 m1 

Real-time depth 

monitoring from 

Raspberry Pi 4 to 

application 

Locally BLE communication when offline 

with time delay 
< 2 s  0.492 s 

Remote MQTT over Wi-Fi communication 

with time delay  
< 2 s 0.469 s 

Frequency of 

readings 
Time between subsequent readings < 5 s 

 3.14 s 

(Simulating or 

GPS device)  

7.32 s  

(using Wi-Fi 

Geolocation) 

File upload from 

Raspberry Pi 4 to 

cloud storage 

Speed of uploading large files (JSON 

messages) to the cloud (when Wi-Fi is 

available) 

> 20 kB/s 27.13 kB/s 

Application 

View real-time UI updates < 2 s 1 s 

 Retrieve and view pre-mapped routes from 

Amazon S3 storage with time delay 
< 5 s 4.419 s 

Hazard Alerts for pre-mapped routes when 

user uses that map “x” m before  
15m 20m 

Hazard 

differentiation 

Accuracy of model during  

training data  
> 85%   81.61%2 

Accuracy of model during  

testing data 
> 80%  91.43%2 

1Outcome value due to limitation of testing facility. 
2The model's accuracy is solely based on the data collected and tested within the same testing facilities.  
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2 Prototype Boat and Hardware Interfaces 
 

To ensure that all connections are properly established, we aimed for a compact design to accommodate 

essential hardware components such as a power bank, a microcontroller, and a USB-UART converter in a 

waterproof box. Additionally, we wanted to create a structure that housed these components efficiently and 

maintained stability and functionality in a freshwater body environment. Furthermore, our design 

considerations extended beyond just the internal components—we also needed to ensure that the structure 

could float on water and give us an accurate result. This requirement led us to explore the design and 

development of a prototype boat, carefully considering factors such as buoyancy, weight distribution, and 

material selection to achieve optimal performance. 

 

2.1 Sensor Selection 

Our project focused on developing an underwater application, which required a sensor specifically designed 

for underwater use. Most of the sensors we initially considered were intended for air or environments with 

minimal humidity. Using a sensor not rated for underwater conditions posed significant risks, including 

potential damage and inaccurate measurements. In such cases, investing in a high-quality, specialized sensor 

is often the most efficient and cost-effective approach, preventing wasted time and effort. 

 

We reviewed various sensors, including ultrasonic, pressure, laser, and radar, to identify the best option. 

After a thorough evaluation, we shortlisted two ultrasonic sensors from different manufacturers. The first 

sensor we considered was the XL-MaxSonar from Maxbotix. It offered all the essential features needed for 

our hardware interface and aligned well with our project budget. However, Maxbotix had not tested this 

sensor for underwater use, which raised concerns about its reliability in our application. As a result, we had 

to rule it out. 

 

Ultimately, we turned to Blue Robotics, a company specializing in underwater and surface drone technology. 

Their business model focuses on innovation and accessibility, providing well-documented products widely 

used in educational institutions. They were also highly responsive and helpful in discussing product options. 

Even though it would consume our entire budget, choosing the Blue Robotics Ping 2 sensor was the most 

logical and efficient decision to ensure the success of our project. 
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2.1.1 Working Principle of the Ping2 Sensor  

The Blue Robotics Ping 2 sensor is designed for underwater distance measurement, offering a 100-meter 

range and a 25-degree beam width. It operates by emitting a brief 115 kHz acoustic pulse from its transducer 

and then listening for returning echoes. As sound waves travel through water, they reflect off solid objects 

and return to the sensor. The distance to an object is calculated using the formula [1]: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝑆𝑜𝑢𝑛𝑑 𝑖𝑛 𝑤𝑎𝑡𝑒𝑟 ∗ 𝐸𝑐ℎ𝑜 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑖𝑚𝑒

2
 

Speed of Sound in water = 1500 m/s 

 
Figure 1 Working Principle of the Ping2 Sensor 

Additionally, the sensor provides a confidence measurement based on the strength of the returned signal. A 

strong signal results in 100% confidence, while noisy environments with a low signal-to-noise ratio reduce 

the confidence level [1]. The Ping 2 sonar communicates via a serial UART interface using the Ping 

Protocol, a binary communication standard. More details on its hardware interface are provided in section 

2.1.2 below. 

 

2.1.2 Hardware Interface 

 

As part of the final hardware integration, Raspberry Pi 4 (RPi4) is directly connected to a 5V power bank, 

ensuring a stable voltage supply for consistent operation. The USB-UART converter is then plugged into the 

USB port of the RPi4. The specific connections between the USB-UART converter and the Ping2 sensor are 

detailed in the table below. 
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Table 3 USB-UART Wiring Connections 

Pin on USB-UART converter Ping2 Sensor wire color 

Vc Red 

Gnd Black 

Tx White 

Rx Green 

  

Initially, to minimize costs, we used an Arduino Uno 3, which we obtained for free from the tech shop. It 

functioned perfectly; however, since it introduced an additional microcontroller and occupied more space 

within the container, we opted to replace it with a USB-UART converter. This change allowed us to achieve 

a more compact and efficient system design.  

  

Figure 2 Connecting the USB-UART Converter to the Raspberry Pi 

Ping2 

Sensor 

RPi 4 

USB-UART 

Converter 

Connection between 

sensor and converter 

Phone Application 

Power bank 
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2.2 Design of a prototype boat  

 

To minimize costs, we prioritized using materials readily available at either a tech shop or within the 

university, eliminating the need for additional expenses. We repurposed a pair of swimming kickboards from 

the university swimming pool area for the boat’s floatation. We used a large circular coffee container to 

house our hardware components, which provided ample space for secure placement. The top of the container 

was intentionally left open to allow easy access to the internal hardware connections. Given the sufficient 

height of the design above the water surface, we were not concerned about water entering the container. 

Additionally, we securely attached the Ping2 sensor to the underside of the kickboards using double-sided 

tape. 

 

2.3 System Integration on Boat 

Initially, our plan was to integrate all the hardware 

components directly into the remote-controlled boat. 

However, when we tested the setup with a similar 

weight to the actual hardware, we noticed that the front 

end of the boat began to sink slightly as shown in 

Figure 4. This imbalance indicated that the boat would 

struggle to stay afloat under the additional load. As a 

result, we had to abandon the idea of placing any 

significant weight on the boat. Otherwise, our carefully 

designed components would risk submersion, 

potentially compromising the functionality and 

stability of the entire system.    

 Figure 3 Top & Side view of the Prototype boat 

Figure 4 RC-Boat when similar weight is applied 
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However, in a real-world environment with an actual boat, this issue would not arise. Unlike the smaller 

remote-controlled version, a full-sized boat has greater buoyancy and stability, allowing us to integrate our 

entire system seamlessly. By creating a designated hole in the hull, we can securely attach the sensor to the 

bottom of the boat, ensuring it remains submerged for accurate data collection. Meanwhile, other essential 

components, such as the Raspberry Pi 4, power bank, and USB-UART converter, can be safely housed inside 

the boat, positioned in a dry and secure area to protect them from water exposure. This setup would allow for 

a fully functional and efficient integration of our system without compromising the boat’s stability or 

performance. 

 

3 MCU Programming 

The Raspberry Pi 4 Model B was chosen for its superior processing power, built-in Wi-Fi, and extensive data 

storage capabilities, which streamlined cloud connectivity and data management [2]. Its ability to handle 

real-time data processing and run complex algorithms significantly enhanced the project's efficiency. 

 

The Raspberry Pi 4 was set up by installing the Raspberry Pi OS on an SD card and configuring system 

settings through updates and interface adjustments [3]. A virtual environment was created, and essential 

libraries, including AWS IoT SDK, Boto3, Blue Robotics Ping, PySide6, and Requests, were installed to 

enable seamless script execution at startup. This setup ensured proper communication, data handling, and 

cloud connectivity for the project. 

 

3.1 Wi-Fi Connection on Raspberry Pi 4 

In the implementation of the IoT Lake/River Depth Measurement and Monitoring System, reliable internet 

connectivity was essential for real-time depth monitoring when Wi-Fi and network access were available, as 

well as for storing the locally saved mapped route to cloud storage. While a dedicated modem would have 

been ideal for seamless internet connectivity in a real-world deployment, the project relied on connecting the 

Raspberry Pi 4 (RPi4) to a mobile hotspot via Wi-Fi. This setup ensured that collected data could be 

uploaded to the cloud once a network connection became available, allowing remote access, visualization, 

and real-time monitoring when possible. 

 

To automate Wi-Fi connectivity, a script was developed to enable Wi-Fi and connect to a known network on 

boot. The script first checked if Wi-Fi was blocked using the rfkill list command and unblocked it, if 
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necessary, with sudo rfkill unblock wifi. The Wi-Fi interface was then turned on using sudo nmcli radio wifi 

on, followed by a 4-second delay to allow the hardware to initialize. The system then attempted to connect to 

the predefined Wi-Fi network using sudo nmcli dev wifi connect <SSID> password <Password>. If the 

connection failed, the script retried every 5 seconds until successful, ensuring continuous network access. 

To verify connectivity and diagnose any issues, several commands were executed manually during testing. 

The rfkill list command was used to check if the Wi-Fi interface was blocked by software or hardware, 

ensuring potential connectivity issues could be identified. If the interface was blocked, sudo rfkill unblock 

wifi was executed to restore functionality [4]. The nmcli dev wifi list command listed available Wi-Fi 

networks, allowing verification of detected networks before attempting a connection [5]. The IP link show 

command displayed details of network interfaces, helping confirm the status and availability of the Wi-Fi 

adapter. The sudo nmcli radio wifi on command ensured that the Wi-Fi radio interface was enabled for 

scanning and connecting to networks. Finally, sudo nmcli dev wifi connect <SSID> password <Password> 

was used to establish a connection to the specified Wi-Fi network, enabling internet access for data 

transmission and real-time monitoring. 

 

By implementing this automated Wi-Fi connectivity process, the project maintained reliable data 

transmission for cloud synchronization and real-time depth monitoring when Wi-Fi and network access were 

available. This approach enabled the system to function effectively within the constraints of the project while 

highlighting the need for a dedicated modem for practical real-world deployment. 

 

3.2 Interfacing Ping2 Sensor on Raspberry Pi 4 

The Ping2 sensor was connected to the Arduino UNO using Software Serial on pins 9 (RX) and 10 (TX), 

with power and ground wired accordingly. The ping-arduino library was installed, and the ping1d-simple 

code was used to read depth and confidence values via Serial Monitor. The Arduino acted as a master in the 

UART communication with Ping2, retrieving sensor data and transmitting it to the Raspberry Pi via USB. A 

Python script was implemented on the Raspberry Pi to read data from the serial port, writing incoming values 

to a file for real-time logging and analysis. The Raspberry Pi handled data processing while leveraging the 

Arduino as a signal translator. 

 

To enhance efficiency and simplify our setup, we revised our design by replacing the Arduino UNO with a 

USB-UART converter for interfacing the Ping2 sensor with the Raspberry Pi 4. This change was primarily 

driven by the need to implement a request-response protocol while reducing power consumption and 

improving compactness for easier integration on a boat. Initially, the Arduino was used to provide library 

support for sensor communication, but we addressed this by utilizing the Blue Robotics Python library 
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directly on the Raspberry Pi. While a vendor-specific serial adapter was considered, budget constraints led us 

to choose a cost-effective USB-UART converter, which effectively translates UART serial signals from the 

Ping2 sensor into USB-compatible communication with the Raspberry Pi. 

 

3.2.1 Implementing the Request-Response Protocol 

To facilitate communication between the Raspberry Pi 4 and the Ping2 sensor, we installed the Blue Robotics 

ping-python library, which provides a Python-based implementation of the Ping messaging protocol and a 

device API for the Ping1D sonar [5]. We created a virtual environment on the Raspberry Pi 4 to manage 

dependencies and installed the necessary libraries within it. This ensures an isolated environment, preventing 

conflicts with system-wide packages and allowing greater flexibility in package management. 

By installing the ping-python library within the virtual environment, we ensured that the package 

dependencies remained contained, avoiding system-wide modifications. Using this library, we implemented 

a request-response protocol, allowing the Raspberry Pi to actively request data from the Ping2 sensor and 

receive real-time measurements in return. This method is more efficient than continuous streaming as it 

reduces unnecessary data transmission, lowers power consumption, and ensures that only the required data is 

processed at any given time. 

 

To establish direct communication between the Ping2 sensor and the Raspberry Pi 4, we developed a Python 

script that interacts with the USB-UART converter, allowing the system to send commands and retrieve 

distance and confidence readings. As illustrated in the sequence diagram, the implementation follows a 

request-response protocol using the Blue Robotics Ping1D library, optimizing data retrieval while 

minimizing power consumption. 

 

The process begins with the initialization phase, where the Raspberry Pi sets up the environment and 

establishes a serial connection with the Ping2 sensor (myPing.connect_serial(device, baudrate)). This step 

ensures stable communication over the USB-UART interface (/dev/ttyUSB0, 115200 baud). As shown in the 

diagram, the script then calls myPing.initialize() to verify sensor detection before proceeding. If the 

initialization fails, the script exits to prevent execution errors. 

 

Following successful initialization, the Raspberry Pi sends a request to retrieve sonar readings 

(myPing.get_distance()). The Ping2 sensor responds with distance (mm) and confidence (%) values, 

completing one cycle of the request-response protocol. This approach, reflected in the diagram’s loop 
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structure, ensures that data is only retrieved when needed, reducing unnecessary power consumption. To 

prevent excessive requests, a 100ms delay (time.sleep(0.1)) is introduced between consecutive readings.  

 

 

To enhance measurement accuracy, the diagram highlights additional configurations, such as setting the 

speed of sound (myPing.set_speed_of_sound(1500)) to account for environmental factors like temperature 

and salinity. Additionally, gain sensitivity adjustments (myPing.set_gain_setting(2)) help filter weak 

reflections, ensuring clearer sonar readings. 

 

Figure 5 Request Response protocol to interface Ping2 sensor on RPi4 
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By structuring communication as a request-response model, we significantly improved real-time sonar 

readings, minimized power usage, and enhanced system efficiency. As depicted in the final steps of the 

diagram, integrating the Ping1D library directly on the Raspberry Pi 4, without an Arduino intermediary, 

streamlined the design while maintaining robust and reliable sonar measurements. 

 

3.3 Interfacing Global Position System on Raspberry Pi 4 

3.3.1 Interfacing the GPS Device on RPi4 

The GU-504GGB GPS module was connected to the Raspberry Pi 4 via USB. To verify the connection, the 

lsusb command was executed, confirming the module's recognition. The assigned serial port was identified 

using dmesg | grep tty, which displayed the port as /dev/ttyUSB0. To check the raw GPS data transmission, 

the command cat /dev/ttyUSB0 was used, and for a structured view of NMEA sentences, screen 

/dev/ttyUSB0 115200 was run, ensuring the baud rate was set to 115200 bps as specified in the module’s 

datasheet. 

 

The GNGLL (Geographic Position – Latitude/Longitude) NMEA sentence was utilized to obtain location 

data. It followed the structure:  

$GNGLL, ddmm.mmmm,a,dddmm.mmmm,a,hhmmss.sss,A,a*hh 

where ddmm.mmmmm and dddmm.mmmmm represented latitude and longitude in degrees and minutes. The 

hemispheres were indicated by 'N' for North, 'S' for South, 'E' for East, and 'W' for West. The time was 

recorded in UTC, while the status field ('A' for valid data, 'V' for invalid) determined data reliability [6]. 

We implemented a method to read and parse GNGLL sentences from the serial port to extract latitude, 

longitude, and accuracy. The system continuously monitored incoming serial data, identifying lines 

containing the "GNGLL" identifier. When a valid sentence was detected, the latitude, longitude, and status 

were extracted and stored in a structured format. 

 

To ensure proper interpretation, the GNGLL sentence was broken down into its individual components, 

including raw latitude, latitude hemisphere (N/S), raw longitude, longitude hemisphere (E/W), and the status 

indicator. The latitude and longitude values were then converted from the NMEA ddmm.mmmmm format to 

decimal degrees by separating degrees and minutes, calculating the decimal value, and adjusting the sign 

based on the hemisphere (negative for South/West, positive for North/East).Accuracy was determined based 

on the status flag (valid (A) or invalid (V)). 
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Overall, the script effectively read real-time GPS data from the serial port, parsed and converted it into a 

more usable format, and stored it for further use in navigation or tracking applications.  

 

 

However, as shown in Figure 6 acquiring a GPS signal indoors was not possible due to building obstacles 

and weak satellite signals. GPS devices typically do not function indoors, as their receivers require an 

unobstructed view of satellites to obtain valid data unless repeaters are used. In contrast, Wi-Fi geolocation 

can determine latitude and longitude by referencing the MAC addresses of nearby Wi-Fi access points. 

However, this method is only viable when a Wi-Fi network is available. In cases where neither GPS nor Wi-

Fi geolocation is accessible, GPS simulation is utilized, generating random latitude and longitude values with 

consistent variation to mimic real movement. For outdoor environments such as lakes or rivers, the GPS 

device provides accurate latitude, longitude, direction, and time data.  

 

3.3.2 Wi-Fi Geolocation 

Wi-Fi geolocation was implemented by scanning nearby Wi-Fi access points and using their MAC addresses 

and signal strengths to estimate location. A Google Maps Geolocation API key was generated and included 

in API requests as a query parameter [7]. The command sudo iwlist wlan0 scan was used to retrieve a list of 

available Wi-Fi access points, extracting MAC addresses and signal strengths. A POST request was then sent 

to the Google Geolocation API with this data in JSON format, allowing the API to return estimated latitude, 

longitude, and accuracy in meters [8]. If geolocation failed, a GPS simulation was used as a fallback when 

Wi-Fi network is not available. This method is only used for testing indoors and validation the actual 

location on map. 

Figure 6 Output showing the NMEA messages from GPS module 
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3.3.3 Reverse Geo Coding 

Reverse geocoding is implemented to convert latitude and longitude coordinates into a human-readable 

address, making location data more meaningful and accessible. This process involves sending a request to the 

Google Maps Geocoding API with the latitude, longitude, and a valid API key [9]. If the request is 

successful, the API responds with a JSON object containing location details, including a formatted address. 

The script extracts this formatted address and uses it to generate a meaningful filename before uploading the 

file to an S3 bucket. If the API request fails or no address is found, appropriate error handling ensures 

smooth execution. 

 

3.3.4 GPS Simulation 

GPS values are simulated by initializing latitude and longitude with predefined coordinates. Small random 

variations within a set speed range are added to these values to mimic movement. The updated coordinates, 

along with an accuracy value, are then stored in a shared data structure. This process generates approximate 

Figure 7 Wi-Fi Geolocation returning Latitude, Longitude & Accuracy using Wi-Fi access points 
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location data for testing and visualization. This method is only used when testing indoors and Wi-Fi is not 

available during testing scenarios. 

 

3.3.5 GPS Methods and Usage 

GPS on the Raspberry Pi 4 was implemented using three methods based on availability. When no network 

was available indoors, GPS data was simulated using random values. If Wi-Fi access points were detected, 

Wi-Fi geolocation was used to obtain GPS coordinates via the Google API. In real-world outdoor 

environments, the external GPS device would provide valid latitude and longitude data in presence of 

satellite signals and receivers, making it the preferred method for accurate positioning. Our software is 

designed to seamlessly switch between GPS data, Wi-Fi geolocation, and GPS simulation, ensuring reliable 

positioning based on the availability of GPS signals and Wi-Fi networks. 

 

3.4 Local Storage 

Mapped routes are stored locally on the SD card of the Raspberry Pi 4 to ensure data persistence before being 

uploaded to the cloud. The system collects depth and location data in real-time, storing it in a structured list. 

When a mapping session is completed, the data is saved as a JSON file with a unique filename, generated 

using a combination of a UUID and the current date and time. This ensures that each recorded session is 

uniquely identified and easily retrievable. The locally stored files serve as a backup and allow the system to 

retain route data even if there is a delay or issue with cloud synchronization. Once saved, these files can be 

later accessed for further processing, analysis, or uploading to AWS S3 for remote access and visualization 

within the app. 

4 Cloud Storage and Communication Setup 

4.1 Wi-Fi Communication 

Using Wi-Fi communication and MQTT with AWS IoT Core as the broker, the system was implemented to 

enable real-time depth monitoring by transmitting data from an RPi4-based depth measurement device to a 

mobile app. The RPi4 is programmed to collect sonar-based depth data and publish the message to a topic via 

MQTT, allowing remote users to access and visualize water depth and hazard information whenever network 

connectivity was available. 
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4.1.1 MQTT Protocol 

MQTT (Message Queuing Telemetry Transport) is a lightweight messaging protocol designed for IoT 

communication, enabling efficient data transmission over limited-bandwidth networks. It follows a publish-

subscribe (pub-sub) model, where clients (devices or applications) either publish messages or subscribe to 

receive them. An MQTT broker acts as the central hub, managing message distribution between publishers 

and subscribers based on predefined topics. Clients establish a connection with the broker, subscribe to topics 

of interest, and receive real-time data updates whenever a new message is published under that topic. Topics 

are hierarchical strings used to categorize and filter messages exchanged between clients. They act like 

channels where publishers send messages and subscribers receive relevant data. Topics are structured using a 

/ separator, allowing for efficient message routing. Clients subscribing to a topic receive all messages 

published under it, ensuring real-time updates based on their selected topics of interest.[10] 

 

AWS IoT Core acted as the MQTT broker, enabling IoT devices like the RPi4 to connect, publish, and 

subscribe to messages securely. It facilitated real-time data exchange between devices and cloud services, 

ensuring seamless communication. Using the AWS IoT Device SDK for Python, we integrated MQTT on the 

RPi4 to send and receive depth monitoring data via AWS IoT and a secure communication [11].  

 

4.1.2 RPi4 Device Connection with AWS 

The Raspberry Pi 4 was configured as an AWS IoT Thing by installing the AWS IoT Device SDK for 

Python, along with necessary dependencies like CMake, libssl-dev, Git, and Python3 with pip3. IoT 

resources, including a thing object, policy, and X.509 certificates, were created to enable secure 

authentication and communication with AWS IoT Core. The device certificates and keys were installed on 

the Raspberry Pi, allowing it to establish an MQTT connection using mutual TLS authentication [12]. 

 

A custom Python script was implemented to handle MQTT communication. The connect_and_subscribe () 

function established a secure connection to AWS IoT Core using the mqtt_connection_builder.mtls_from_ 

path () method, specifying the endpoint, device certificate, private key, and root CA certificate. The 

connection was set up with a persistent session and a 30-second keep-alive interval to maintain continuous 

communication. Upon a successful connection, the script allowed the device to subscribe to relevant topics. 

For publishing data, whenever the Raspberry Pi 4 measured depth, GPS coordinates, and other sensor data, it 

structured the data in JSON format and used the publish_message() function to send it to AWS IoT Core 

under the topic "g9capstone/readValues". If Wi-Fi is available, used the mqtt_connection.publish() method to 

ensure reliable delivery with QoS level 1 (AT_LEAST_ONCE). This setup enabled real-time 
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synchronization of depth and locations readings with AWS IoT Core. Additionally, once connected to AWS 

IoT, the RPi4 starts publishing a heartbeat message every minute to the topic "g9capstone/piHeartbeat", 

indicating its connection status and ensuring continuous monitoring of the device’s availability. This setup 

enables real-time synchronization of depth, location readings, and device health with AWS IoT Core. 

 

4.1.3 App Connection with AWS 

On the App side, Fleet Provisioning with Claim Certificates enables the seamless and scalable onboarding of 

devices by dynamically assigning each user a unique device certificate upon their first connection to AWS 

IoT Core. This approach eliminates the need for manually preloading device certificates, making it ideal for 

large-scale IoT deployments. 

 

Fleet Provisioning is a mechanism in AWS IoT that automates the registration and authentication of devices. 

It allows devices to use a provisioning claim certificate—a temporary certificate embedded in the app—to 

connect to AWS IoT Core and request a unique device certificate. The app first connects using claim 

certificates, subscribes to the AWS provisioning topics, and initiates a certificate creation request. Once the 

new certificate is issued, the app registers it, attaches necessary IoT policies, and then switches to using the 

unique certificate for all future communications [12]. 

 

To facilitate real-time communication, the app subscribes to g9capstone/#, a wildcard topic that captures 

updates from all subtopics. Using MQTT methods, it establishes a subscription with QoS level 1 

(client.subscribe(topic, MqttQos.atLeastOnce)) and listens for incoming messages asynchronously 

(client.updates!.listen()). The received messages are processed based on their topic, such as 

"g9capstone/readValues" for real-time sensor data from RPi4, "g9capstone/piHeartbeat" for monitoring 

device health, and responseTopic for AWS IoT provisioning updates. This ensures a secure, efficient, and 

seamless IoT communication flow between the RPi4 and AWS IoT Core. The RPi4 continuously measures 

depth, GPS location, and other telemetry data, publishing it to AWS IoT Core whenever Wi-Fi is available. 

By leveraging Fleet Provisioning, the app ensures a secure and automated way to onboard devices, maintain 

authenticated communication, and enable real-time IoT data streaming between the RPi4 and the application.  
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4.1.4 Wi-Fi Communication Flow from RPi4 to App via AWS IoT Core 

1. RPi4 connects to Wi-Fi and 

then connect to AWS IoT Core 

using certificates and keys.  

2. Every 1 minute, RPi4 

publishes a heartbeat to 

g9capstone/piHeartbeat. 

3. The App connects to AWS IoT 

Core using Fleet Provisioning 

by claim certificates and 

subscribes to g9capstone/#. 

4. RPi4 reads sensor data (Depth, 

GPS) and publishes to 

g9capstone/readValues. 

5. AWS IoT Core forwards both 

messages (heartbeat & sensor 

data) to the App. 

6. The App processes heartbeat 

& sensor data separately. 

Figure 8 Example of publishing and receiving value using RPi4 and MQTT Test Client [13] 

Figure 9 Wi-Fi Communication Flow from RPi4 to 

App via AWS IoT Core 
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4.2 Bluetooth Communication 

Our depth monitoring device was able to use Wi-Fi to transfer data from the device to cloud storage and the 

app. However, we decided to add Bluetooth communication to our device for one main reason. We cannot 

rely on our users having access to Wi-Fi on lakes and rivers. Therefore, we used a short-range 

communication protocol for data transfer when Wi-Fi is unavailable. 

We used this Bluetooth communication protocol to provide two functionalities. The first functionality is to 

provide a Human Machine Interface (HMI) functionality on our Graphical User Interface (GUI) app to 

control the depth monitoring device. We chose to implement a software HMI instead of a physical HMI for 

the following reasons. 

• Using a physical HMI requires buttons for controls and LEDs or a small LCD screen for feedback. 

This will add additional expenses to our budget. 

• Using a physical HMI limits device control to the number of buttons. Using software HMI allows us 

to exchange any data/commands we wish. 

• Using a software application HMI on GUI is the more modern approach.  

• Additionally, our users should have our application with them anyways on their phone. So, it is 

convenient to integrate an HMI into our application 

The second functionality is to share real-time data collected with the device with our users through the app. 

The device will package the real-time data collected by the device into a JSON. This JSON will then be 

shared directly with the app through Bluetooth communication. 

 

4.2.1 Bluetooth Low Energy Protocol 

BLE works in a similar way to client-server connections. The depth monitoring device will function as a 

server AKA a peripheral device. The app will function as a client AKA a central device. BLE works by 

creating a generic attribute profile (GATT) which contains three different types of attributes: service 

attribute, characteristic attribute, and descriptor attribute. To create a BLE server, one must create a 

combination of these attributes which results in the creation of a GATT table. The BLE server advertises its 

services. The BLE client looks at all nearby devices and what services they offer and initiates a connection 

with one of the devices. Upon connection the client can view the GATT table and start exchanging data. See 

appendix B for more in-depth knowledge of the Bluetooth protocol or check [14]. 
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4.2.2 Device Server 

Table 4 GATT table for device server 

Attribute Name UUID 
Attribute 

Permissions 
Attribute Value 

Device Control Service 

(Service Declaration) 
0x2800 Read 

UUID: 37dd28eb-b0e5-4714-

b874-0fa1f50f88bf 

Device State Characteristic 

(Characteristic Declaration) 
0x2803 Read 

Properties: Read & Write 

UUID: 9232ed36-2122-4773-

b1c8-31c2d5114e96 

Device State Characteristic 

(Value Declaration) 

9232ed36-2122-

4773-b1c8-

31c2d5114e96 

Read & Write 
Device State 

(START, STOP, UPLOAD) 

Depth Monitoring Service 

(Service Declaration) 
0x2800 Read 

UUID: cbc3bb98-e29b-4b8d-

8a1b-3e90aa65a790 

Depth Value Characteristic 

(Characteristic Declaration) 
0x2803 Read 

Properties: Notify 

UUID: 6943ec7e-cb2e-4b44-

9adc-7f5d12837bd1 

Depth Value Characteristic 

(Value Declaration) 

6943ec7e-cb2e-

4b44-9adc-

7f5d12837bd1 

Notify 
Depth Value 

(Depth Value JSON) 

Client Characteristic 

Configuration Descriptor 

(Descriptor Declaration) 

0x2902 Read & Write 
Unsubscribe: 0x0 

Subscribe: 0x1 

 
For our project, we created a BLE server and added our custom attributes to the GATT table, which shown 

above. To provide the first functionality discussed above, we created a Device Control Service attribute 

along with a Device State Characteristic attribute. This service is used to control the state of the device. It has 

a characteristic value that the client can use to send commands to the device. The characteristic property is 

set so that a central device can read and write values. The client can write "START", "STOP", or "UPLOAD" 

as utf-8 bytes to the characteristic value to send commands to the device. 

To provide the second functionality above, we created a Depth Monitoring Service attribute and a Depth 

Value Characteristic attribute. This service is used by the server to send the most recent depth value read to 

the client. It has a characteristic value which contains a JSON with the most recent reading. The 
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characteristic property is set so that the server notifies connected clients with new readings. The client can 

subscribe and unsubscribe to receive depth data notifications from the server. 

 

4.2.3 App Client 

The app uses the flutter_reactive_ble library to interact with Bluetooth Low Energy (BLE) devices [15]. It 

follows a structured process to scan for devices, establish a connection, subscribe to real-time data, and send 

commands. The reactive BLE library provides comprehensive support for interacting with Bluetooth Low 

Energy (BLE) devices. It enables seamless device discovery, allowing the app to scan for nearby BLE 

devices that advertise specific services. Additionally, it includes functionality to monitor the BLE status of 

the host device, ensuring that the app can detect changes such as Bluetooth being turned off or permissions 

being revoked. Once a suitable device is found, the library facilitates establishing and maintaining 

connections, even across multiple devices. It ensures that connection status updates are continuously tracked, 

making it easier to manage simultaneous connections. While service discovery happens implicitly during this 

process, the library provides the necessary mechanisms to access characteristics for reading and writing data. 

To support real-time data exchange, the library allows subscribing to characteristics, enabling automatic 

notifications whenever new data is available. It also includes advanced features such as clearing the GATT 

cache to resolve stale data issues and negotiating the Maximum Transmission Unit (MTU) size, optimizing 

data transfer efficiency. These capabilities ensure reliable and efficient communication between the app and 

BLE devices. 

 

 

 

 

Figure 10 Example output of App discovering, connecting and subscribing to BLE characteristics 
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Scanning for Devices 

The app initiates a BLE scan to discover nearby devices advertising a specific service. It filters results based 

on the targeted service UUID and collects unique device identifiers. The scan runs for a limited duration, 

after which the discovered device IDs are processed. If no devices are found, the process can be retried after 

a short delay. 

 

Connecting to a Device 

Once a device advertising the required service is identified, a connection request is made. The app ensures 

that the device supports the expected service and attempts to establish communication. Throughout the 

connection process, state updates are monitored to detect any changes, such as connection failures or 

unexpected disconnections. 

 

Subscribing and Listening for Data 

After a successful connection, the app subscribes to a characteristic responsible for transmitting depth values. 

The characteristic supports BLE notifications, enabling real-time updates whenever new data is available. 

Incoming values are decoded and processed, allowing the app to display or utilize the received data. 

 

Sending Commands 

To control the BLE device, the app writes specific commands to a designated characteristic. Commands like 

"START," "STOP," or "UPLOAD" are encoded into a format the device can interpret and then sent over 

BLE. The write operation ensures that the device receives and processes the commands as expected. 
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4.2.4 BLE Communication Flow

 

4.2.5 BLE Communication Overview 

As a result, the depth monitoring device can communicate with the app through Bluetooth. The user can 

control the device using the app. They can start and stop a data recording session. When a data recording 

session is complete, they upload the data to our cloud storage given a Wi-Fi connection. When Wi-Fi is 

unavailable, the device will share real-time data that is being recorded with the user via BLE. The data will 

also be stored in the SD card of the device, so that it can be uploaded to our cloud storage later when Wi-Fi is 

available. 

Figure 11 BLE Communication Flow: Connect, Real Time Depth Monitoring and Device Control 
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4.3 Real Time Communication Message Passing 

RPi4 reads the depth, and location values and communicates a JSON message to App via Wi-Fi using MQTT 

protocol over AWS IoT Core and via BLE when Wi-Fi is not available. 

 
Table 5 Real Time JSON Message Contains 

distance integer Num 

confidence integer Num 

latitude decimal (Float) 

longitude decimal (Float) 

accuracy decimal (Float) 

timestamp yyyy-mm-dd hh:mm:ss 

 
Example of a JSON message: { 

        "distance": 12, 

        "confidence": 0, 

        "latitude": 49.8083267, 

        "longitude": -97.1345926, 

        "accuracy": 15.314, 

        "timestamp": "2025-01-29 15:20:40" 

    } 

 

4.4 Cloud Storage 

Amazon Simple Storage Service (Amazon S3) is a cloud-based object storage service that provides high 

scalability, security, and reliability. It allows users to store and retrieve any amount of data for various use 

cases, including backups, data lakes, mobile applications, and IoT storage. With built-in management 

features, S3 helps optimize data access, security, and compliance needs for businesses of all sizes. 

 

4.4.1 Usage and Setup of AWS S3 

AWS S3 is used in this project to store user-specific IoT certificates, pre-mapped routes from Raspberry Pi 4, 

and machine learning model files. The setup involved creating an S3 storage bucket via the AWS Amplify 
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backend studio. For integration within the Flutter app, the amplify_storage_s3 package was used to enable 

seamless file uploads and retrieval. 

 

To access stored pre-mapped route files, the app retrieves a list of all files stored in the public/MappedRoutes 

directory. This is done using the Amplify Storage list function, which allows the app to scan and fetch details 

of all files within the specified S3 path. The function ensures that all available pre-mapped route files are 

listed and can be accessed by the user. The storage listing process is configured to retrieve all objects within 

the directory by utilizing plugin-specific options, ensuring that no files are missed. 

 

On Raspberry Pi 4, the boto3 library was used for direct file uploads to S3. The upload process was 

implemented using the boto3.client('s3') function [16], where AWS credentials (access_key_id and 

secret_access_key) are used for authentication. The script uploads files by calling an S3 upload function, 

ensuring that collected data, including pre-mapped routes and analyzed results, is securely stored and 

accessible from the cloud for users to retrieve and visualize within the app. 

 

Pre-Mapped Routes to S3 

In this project, pre-mapped routes are generated and saved locally on the Raspberry Pi 4 (RPi4) after 

collecting depth and location data. The RPi4 system continuously logs depth readings and GPS coordinates, 

storing them as a timestamped JSON message list. These JSON files also contain analyzed data from a 

hazard differentiation algorithm, which processes the collected information to identify potential hazards and 

navigation insights. 

 

To make this analyzed data accessible to users, the JSON files are uploaded to AWS S3. This ensures that 

boaters using the mobile app can retrieve pre-mapped routes, review hazard assessments, and make informed 

navigation decisions for improved safety. The upload process involves reading the locally stored JSON files, 

extracting latitude and longitude coordinates, and performing reverse geocoding to generate a human-

readable filename. 

 

For the actual upload, the script uses the boto3 library in Python, specifically the boto3.client('s3'). 

upload_file() function. This function takes the local file path, the target S3 bucket name, and the destination 

path (public/MappedRoutes/) as parameters. The app reads pre-mapped route files stored in AWS S3 by first 

listing all files in the public/MappedRoutes/ directory. This ensures that all available mapped route data is 

retrieved for processing. Once the files are listed, the app logs the retrieved items and iterates through each 

file to download its content. After downloading, the file data is decoded into a UTF-8 string and parsed as 

JSON. Each JSON object in the list is then processed to extract relevant depth and location information, 
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enabling users to visualize and analyze the mapped routes. Throughout this process, the app implements error 

handling mechanisms to manage issues such as missing files, incorrect formatting, or connectivity problems, 

ensuring a seamless user experience. 

 

Hazard Differentiation Model Storage 

The hazard differentiation model is an SVM-based machine learning model stored as a .pkl file on AWS S3. 

The Raspberry Pi system ensures it always has the latest version by automatically downloading the most 

updated model from S3. This allows the device to use the most recent training data for making accurate 

predictions. To retrieve the model, the script initializes an S3 client using boto3, authenticated with AWS 

credentials. It first checks if the designated local folder exists and creates it if necessary. The model file is 

then downloaded from the specified S3 bucket to this folder using the s3.download file () function. If any 

issues arise, such as missing credentials, incorrect paths, or network errors, appropriate error handling 

mechanisms are in place to ensure a smooth download process. A New models can be trained remotely using 

pre-mapped route data and upload updated .pkl files to S3. This enables seamless deployment, allowing 

Raspberry Pi to fetch and apply the latest model without requiring physical access to the device. 

 

5 Hazard Differentiation 

5.1 Overview 

Hazard differentiation is a feature we added to improve the safety of users during boating operations. We 

wanted to utilize machine learning to identify hazards in previously measured depths, as well as evaluating 

the level of danger in the spotted hazards. From there, we integrated it with the mobile application to send 

alerts to the user when approaching any of these hazards. 

 

5.2 Machine Learning 

We employed supervised learning to train a model using labeled data, enabling it to predict hazard severity 

based on sensor inputs. Supervised learning is an approach that involves having a dataset that has been 

labelled to train a model. The model learns the relationship between the inputs and outputs through a selected 

number of features from the dataset, then uses that to make predictions on unseen data. [17] 
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5.2.1 Dataset Development 

We looked at some bathymetry datasets available online to use for training. Most of the datasets we found 

were measuring ocean depths, which were not suitable since they are much deeper than lakes or rivers. We 

also found lake datasets, but we did not have information for underwater hazards, so we could not use them 

for supervised learning.  

 

We created a custom data set using our IoT system composed of the Raspberry Pi, GPS, and sensor. The 

features we obtained from the sensor were distance and confidence value; and from the GPS, we obtained 

longitude, latitude, accuracy, and timestamp. We chose four features for training, which were depth, 

confidence value, latitude, and longitude. The target labels were numbered 0-5 to classify the danger level of 

the hazard, with no hazard being detected and 5 being the highest level. Our proprietary dataset used several 

field tests conducted at a river-model apparatus available in a Hydraulics Lab on campus. 

 

5.2.2 Model Selection and Training 

We evaluated seven ML algorithms for compatibility with the Raspberry Pi 4’s constraints (limited 

CPU/RAM, 4GB model). Out of those considerations, Artificial Neural Networks (ANN), AdaBoost, 

Decision Trees and GPIO Zero were excluded due to hardware limitations or overfitting risks. We moved 

forward with further investigation into the model accuracy for Random Forest Classifier (RFC), Support 

Vector Machine (SVM), and K-Nearest Neighbors (KNN).  

We decided to create a Support Vector Machine classifier using the Scikit Learn library to perform our 

classification task. As shown in Figure D1, we achieved 88.89% accuracy on multi-class classification (6 

labels) whereas it was 77.78% for Random Forest and KNN. Moreover, SVM provides us with a compact 

model size that is ideal for Raspberry Pi deployment and its linear kernel avoids the computational overhead 

of non-linear alternatives. SVM finds the optimal hyperplane to separate the dataset into different classes. It 

Figure 12 Confusion Matrices of Model Accuracy for RFC, SVM, and KNN 
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maximizes the margin between the closest data points that are in different classes from each other. These 

closest data points are the support vectors, and the margin is the distance from them to the hyperplane. [18] 

We used K-fold cross validation to evaluate the model’s performance five times. The dataset was divided 

into five groups (folds), each making up 20% of data. One of the folds was treated as the test set, and the 

remaining folds were used as the training set. The test set was changed to a different fold after performing 

classification. The dataset we used had a majority class of 0, which also made up most of the dataset. The 

other classes were in much lower numbers, so our dataset had an imbalanced distribution of classes. To aid 

this, we used Stratified K-fold cross validation which divides the data to have an even distribution of classes 

for each fold. After performing classification on all 5 folds, the results were an average accuracy of 81.61%. 

 

5.3 Model Update and Generalization for Real-World Deployment 

To ensure robust performance in real-world conditions, we propose a comprehensive, cloud-assisted model 

update pipeline that continuously refines our hazard differentiation model. Presently, our model is trained on 

data gathered from a controlled river-model apparatus in the Hydraulics Lab, which provides a stable and 

predictable environment. Recognizing that this controlled environment does not capture the full variability of 

lakes and rivers, we propose a plan to integrate real-world data into our training process through a three-

phase deployment strategy. 

 

In the first phase, we can deploy our current model on the Raspberry Pi at strategically selected locations 

near shorelines, where conditions are moderately variable. These test sites will be equipped with our sensor 

Figure 13 Accuracy for K-fold cross validation (K = 5) 
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package and, optionally, supplementary underwater cameras to capture additional contextual information 

such as water turbidity and object visibility. The onboard Raspberry Pi will record sensor outputs along with 

metadata like weather conditions and will periodically upload this data to our secure cloud storage. This real-

world dataset will then serve as the basis for an iterative retraining process in the cloud. 

 

Secondly, the cloud-based retraining pipeline, secured via our IoT core services, will re-evaluate the model's 

parameters using advanced validation techniques, including extended cross-validation and anomaly detection 

mechanisms. These mechanisms will be included in our future recommendations for this system to help the 

system to generalize into the real-world scenario. The additional context like camera footage would come as 

a great help for the system to provide accurate feedback to the system which can be done automatically or 

manually or in both ways. When the updated model achieves our target performance (for example, 

maintaining or exceeding a 91% testing accuracy under varied environmental conditions), it is automatically 

pushed to our AWS cloud. As our deployed edge devices (Raspberry Pi units) fetch the model file from 

AWS cloud after every recording session, this process would eventually ensure that our hazard 

differentiation system always operates with the most recent and robust version of the model on the Raspberry 

Pi units. 

 

To further guarantee system reliability, we incorporate a real-time monitoring feedback loop on the 

Raspberry Pi in the final phase. The system continuously monitors the performance of the deployed model 

against new incoming data. If this performance falls below a predefined threshold, indicating a potential 

misfit with the current environmental conditions, the device will revert to a previously stable model version 

until a successful update is confirmed. This fallback mechanism is crucial for ensuring continuous, reliable 

hazard detection even in the face of fluctuating environmental variables. 

 

This comprehensive approach, which combines systematic data collection under real-world conditions with 

continuous cloud-assisted retraining and secure deployment, ensures that our hazard differentiation model 

remains accurate and reliable. By incorporating additional sensors for context and robust feedback 

mechanisms, we address potential uncertainties and guarantee that the system can adapt and scale to the 

diverse challenges of actual lake and river environments. 
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6 Path Mapping 

Path mapping is a feature we added to our system to find safe routes between points in a depth map. The 

feature works on an open body of water. Boaters can use our device to collect bathymetry data of an area. 

The collected samples are fed to some algorithms to provide a safe route between two points on a map. The 

collected samples provide the depth values and hazard levels, from our hazard differentiation feature, for 

each reading. We considered a safe route to be any route that avoids shallow and hazardous areas. 

 

To develop this feature, we must create an algorithm that takes a list of samples with scattered data and 

produces a list of coordinates that connects the two points. Since the collected samples are unstructured 

(scattered data), the first method we considered was to use graph data structures and algorithms. This would 

mean finding the set of edges in a graph that connects nodes together to form a safe route. This method was 

not the best approach for several reasons. 

1. Each sample is a node in the graph. However, it is not straightforward how the nodes in the graph 

should be connected. 

2. The algorithm to determine a safe route could be expensive. 

3. Most importantly, the route formed from a graph data structure will be jagged, since samples are 

scattered, which is not ideal for creating routes. 

Figure 14 Difference between structured and unstructured data [19] 
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The second method for developing this feature converts unstructured data to structured data using 

interpolation. The structured data will form a matrix of depth values for evenly spaced latitudes and 

longitudes. The matrix will then be fed to a routing algorithm which produces a safe route between two 

points. 

 

Although either method can work, we chose the second method because it is the better and safer choice for 

the reasons stated above. The details of how these algorithms work is described below. 

 

6.1 Interpolation Algorithm 

Radial Basis Function (RBF) interpolation is used to convert scattered data to gridded data. To interpolate 

new points, the method considers the distance between the new point (interpolant) and each sample point. 

The sample points that are closer to the interpolant weigh more, while the sample points that are further away 

weigh less. RBF interpolation uses a kernel function to determine the weight of each sample based on 

distance. The kernel function we chose was the gaussian kernel shown in the equation below. As distances 

increase, the gaussian kernel will decay to zero resulting in that point adding nothing to the sum. 

 

𝐾(𝑥1⃗⃗⃗⃗ , 𝑥2⃗⃗⃗⃗ ) = 𝑒
−
|𝑥1⃗⃗ ⃗⃗  −𝑥2⃗⃗ ⃗⃗  |2

μ  
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𝑁

𝑖=1

𝑒
−
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μ  

 

The interpolation algorithm had one tunable parameter, , which controls the quality of the interpolation. 

When this parameter is set to a low value, it results in the interpolated surface passing closely through the 

sample points. This is because the gaussian function decays faster so points further away are not considered. 

When this parameter is set to a high value, it results in a smoother and flatter interpolated surface. This is 

because the gaussian function decays slower, so more points weigh in on the interpolant. Additionally, the 

domain of the coordinates needs to be scaled with this parameter. To scale the domain, we used min-max 

feature scaling on the list of samples. After that, the optimal value of the parameter was found to be =0.03 

using gradient descent, as shown in figure 15. The tunable parameter was set to that constant. We also added 

another constant that trims the sample domain. This was done because interpolating near the edges is not 

reliable. More details on the optimization of this parameter are shown in appendix D. 

 

The algorithm takes the list of scattered data collected during a recording session. The data is normalized 

using min-max feature scaling. Next, the weights are found for each sample point using matrix 
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multiplication. Finally, using the weights, the interpolants are found once again using matrix multiplication. 

The algorithm outputs interpolated depth values that are evenly spaced along latitudes and longitudes. More  

details of how values are interpolated are shown in appendix C. 

 

Figure 15 Gradient descent curve of interpolated surface Figure 16 Trim applied to 

sample space 

Figure 17 Interpolation of a testing surface with 100 random samples 
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6.1.1 Integrating Hazards 

The interpolation algorithm converts an unstructured list of depth values into a structured matrix of depth 

values. However, a safe route is found by evaluating depth and hazard level, determined from the hazard 

differentiation feature. The hazard level needs to be incorporated into the structured matrix of depth values. 

To do this, we went through the list of scattered data and for each hazard, a block of depths around the 

hazardous sample was turned to zero in the matrix. For a low hazard level, a small block of depths is 

changed. For a high hazard level, a large block of depths is changed. This effectively incorporates hazards 

into the converted data, since a safe route should avoid shallow areas. 

 

6.2 Routing Algorithm 

The structured matrix is fed into the routing algorithm. Along with that, the start and end coordinates and the 

minimum depth are required. Since the data is structured, developing the routing algorithm became easier. 

The idea behind the algorithm is to make incremental progress towards the end. The route starts at the start 

coordinate in the matrix. One step, in the matrix, is taken at a time and added to the route. Upon reaching a 

shallow area, the route traces around the unsafe area until it can once again move towards the end. However, 

when tracing around an unsafe area, the algorithm does not know what the best option for tracing is. It can be 

traced clockwise (CW) or counterclockwise (CCW). To address this issue, the algorithm uses recursion. One 

recursive branch will trace CW, while the other branch will trace CCW. This means each time an unsafe area 

is encountered, the algorithm splits into two branches. When the algorithm reaches the end coordinates, the 

branch returns to its route list. Each pair of branches in the recursion stack are compared, and the shorter 

route list is returned.  

Figure 18 Hazards integrated into interpolated surface 
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One thing to add is that, to make it simpler for the algorithm to choose the direction to move in, we created a 

compass data structure. It was created using a circular doubly linked list with CW or CCW rotation. The 

compass and a copy of the most recent route list is passed to each branch. 

 

An example of the working algorithm is shown in figure 19. The algorithm starts routing as shown with the 

blue route. It collides with an unsafe area and splits into two branches. The first branch, shown with the 

orange route, starts tracing with CCW rotation and collides with another unsafe area. It splits in two branches 

again. The two branches reach the end coordinate and return their route. The algorithm returns to the first 

splitting point and starts tracing with CW rotation, shown with the purple route. The purple route reaches the 

end and returns its route. The shortest route will be chosen which will be the combination of the blue, orange 

and red routes. 

To summarize how the algorithm works, it makes progress towards the end in a while-loop. There are three 

sections in this loop. The first section moves towards the end location one step at a time. The second section 

makes two recursive calls upon encountering an unsafe area. The branch that made the call stops making 

progress and waits for a route list to be returned. The last section traces around the unsafe area based on the 

Figure 19 Routing algorithm area tracing and branching 
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rotation of the compass. If it can move towards the end safely, it escapes, and the algorithm moves back to 

section one. The algorithm ends once all branches return, or the maximum number of iterations is reached. 

The number of iterations is capped to the size of the matrix. The shortest route list is returned as the safe 

route. If no safe route is found or the maximum number of iterations is reached, an empty list is returned. 

 

7 Application development 

AWS Amplify [20] simplifies backend integration for Flutter apps, streamlining authentication and cloud 

services setup. Using the Amplify CLI, the project was initialized, and AWS services like Cognito were 

configured for authentication. The Amplify Authenticator UI was leveraged to implement user authentication 

seamlessly. The app setup included installing Flutter, configuring iOS and Android environments, and 

verifying with flutter doctor. Amplify's significance lies in providing a scalable and efficient way to integrate 

Figure 20 Shortest route provided from start to end 
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AWS services without extensive backend coding. Amplify Studio was enabled to provide a visual interface 

for managing backend resources, making development more efficient [21]. 

 

7.1 UI State Management and Providers Used 

UI state management in Flutter follows a declarative approach, where the UI is rebuilt from scratch to reflect 

the current app state instead of modifying elements directly. Flutter distinguishes between ephemeral state, 

which is temporary and widget-specific, and app state, which persists across the app or multiple widgets. 

Ephemeral state is managed with Stateful Widget and setState(), while app state requires dedicated state 

management solutions like Provider, which enables efficient and scalable state handling. By using 

ChangeNotifier with Provider, Flutter apps ensure that UI updates dynamically when state changes, 

improving performance and maintainability [22]. 

 

In this app, ChangeNotifierProvider is used to supply state objects to the widget tree, ensuring efficient state 

updates. notifyListeners () is called whenever data changes, triggering UI updates. The LocationData 

provider manages real-time location updates, storing a list of LocationInfo objects that track latitude, 

longitude, accuracy, and other metadata. It also maintains a heartbeat value to monitor connectivity with 

AWS IoT Core. The LocationMapProvider handles multiple location maps and routes stored in the cloud, 

allowing dynamic retrieval and visualization of mapped paths. By leveraging these providers, the app 

efficiently updates UI components based on incoming real-time data. 

 

7.2 Wi-Fi and BLE Connection Logic and UI 

The home screen features two primary connection buttons: one for connecting to AWS IoT and another for 

connecting to the Raspberry Pi (RPi) via Bluetooth. The "Connect" button initiates the AWS IoT connection 

using fleet provisioning by claim certificates, and upon successful connection, the "App Connected" status 

updates to indicate a successful link. Additionally, the "Pi Online" status dynamically updates based on the 

heartbeat values received from the RPi through MQTT, signifying its connectivity. Similarly, the "Connect 

Bluetooth" button scans for BLE devices advertising a specific service, attempts to establish a connection, 

and subscribes to real-time data updates. Once connected, the "App Bluetooth Connected" status updates, 

confirming the app’s connection, while the "Pi Bluetooth Connected" status reflects whether the RPi’s 

Bluetooth service is active. These statuses provide real-time feedback, ensuring seamless monitoring of both 

cloud and Bluetooth connectivity. 



Page 36 of 63 

 Price Faculty of 
Engineering 

The home screen also includes navigation buttons for accessing key functionalities: "Device Control", "View 

Real-Time Depth", and "View Pre-Mapped Routes". The "Device Control" button navigates to a screen for 

managing connected devices, while "View Real-Time Depth" opens a live data visualization of depth and 

location updates received via Bluetooth. The "View Pre-Mapped Routes" button allows users to access and 

display pre-mapped location data stored in the cloud, providing a visual representation of mapped routes. 

 

7.3 Receive and Display Real Time Depth and Location Info 

The real-time depth and location monitoring system receives data through two communication channels: Wi-

Fi (MQTT) and Bluetooth Low Energy (BLE). These channels provide continuous updates on depth readings 

and GPS coordinates, which are processed and displayed dynamically on a Flutter Map with markers and 

polylines. 

 

Receiving Real-Time Data 

For BLE communication, the app subscribes to a specific characteristic of the connected device. When new 

data is received, the subscription callback decodes the incoming UTF-8 payload and passes it to the 

handleReadValuesResponse function, which extracts depth, confidence, latitude, and longitude information. 

Figure 21 App Home Screen: Wi-Fi and BLE Connect Buttons and Buttons to other screens 
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Similarly, for WiFi communication using MQTT, the app listens to subscribed topics such as 

"g9capstone/readValues", "g9capstone/piHeartbeat", and extracts relevant sensor readings. The parsed data is 

then processed to update the provider, ensuring that real-time updates are reflected in the UI. 

 

Updating the Provider with New Data 

The LocationData provider manages the list of received locations and triggers UI updates whenever new data 

is added. When real-time data is received via MQTT (WiFi) or BLE, it is processed and stored in 

_locationList, and the notifyListeners() method ensures that the UI updates dynamically. 

Whenever a new location update is received, the provider: 

1. Adds the new location to the _locationList 

2. Notifies the UI to rebuild and display updated markers and polylines 

3. Ensures smooth, real-time visualization of depth and location data 

By leveraging providers for data management and Flutter Map for visualization, the system ensures an 

efficient and responsive real-time mapping interface, helping users track depth data and movement patterns 

with ease. 

 

Additionally, the provider manages heartbeat values that monitor the connection status. The app 

continuously updates the _heartbeatValue, which can trigger alerts or UI changes if connection issues arise. 

 

Updating and Displaying Real-Time Data on the Map 

The Flutter Map component dynamically updates to visualize received depth and location data in real-time. 

The RealTimeDepthScreen can be accessed by used by clicking the View Real Time Depth Button on Home 

Screen. This UI utilizes a Timer.periodic() function and providers, which triggers UI rebuilds when providers 

are updated with new data on receiving messages from RPi4 via Wi-Fi or BLE ensuring that the latest data is 

always displayed. 

 

Displaying Markers on Flutter Map 

Each recorded location is represented by a marker, displaying: 

• Depth readings (in mm) 

• Confidence values (in %) 

• Timestamps of when the data was received 

The MarkerLayer dynamically iterates through the location provider’s list, creating markers with a red pin 

icon for each recorded data point. When a user taps on a marker, a popup dialog appears, showing detailed 

information such as timestamp, depth, and confidence percentage. Additionally, a Tooltip provides a quick 

preview of the depth reading directly on the map without requiring a click. 
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Displaying Polylines for Path Tracking 

To visualize the movement path over time, the app also connects consecutive location points using polylines. 

The PolylineLayer fetches all location points from the provider and renders a blue path, indicating the 

traveled route in real time.  

7.4 Fetch Pre-Mapped Routes from Cloud and Display List 

The pre-mapped list of data is retrieved from AWS S3 cloud storage whenever the user refreshes the screen. 

The system first clears any existing map data before fetching the latest files stored in the cloud. These files 

contain location-based data with key details such as timestamp, distance, confidence, latitude, longitude, 

accuracy, and prediction values. 

 

Figure 22 Real Time Depth and Location Monitoring Screen 
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Once the data is retrieved, it is carefully processed. If the dataset includes a safe route, it is extracted 

separately and stored for reference. If no safe route is found, a default placeholder is assigned. The processed 

location data, along with the corresponding map name, is then stored in a state management provider, 

ensuring that the application maintains an up-to-date record of all available maps. 

 

After updating the provider, the UI is automatically refreshed to reflect the latest data. The updated list of 

maps is displayed dynamically, allowing users to select and explore different pre-mapped routes. Each entry 

provides access to a detailed view with a heatmap visualization, showing the recorded data points along with 

the safest suggested route if available. Additionally, users have the option to download maps for offline 

access, storing them locally for future use. 

7.5 Display Pre-Mapped Route data 

The heatmap screen visualizes pre-mapped routes using markers, polygons, and polylines to provide a clear 

representation of recorded location data and safety insights. Each location point from the dataset is displayed 

as a marker, placed using its latitude and longitude coordinates. These markers also include small labels 

Figure 23 Pre-Mapped List fetched and display list 
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indicating distance values, ensuring users have contextual information about each recorded position. 

Additionally, small patches are added around the markers with a semi-transparent fill, enhancing visibility 

and differentiation between various data points. To define the overall mapped boundary, the system uses the 

computeConvexHull function, which generates a polygonal boundary encompassing all relevant route points. 

This ensures that users can see the extent of the tracked locations as the boundary. Each marker is assigned a 

color based on its prediction value, indicating different hazard levels as determined by the hazard 

differentiation algorithm. Green markers signify low-risk areas, yellow markers indicate moderate risk, 

orange markers show increasing danger, and red markers highlight high-risk locations. This dynamic color-

coding allows users to quickly assess potential hazards along a given path. For added safety insights, a safe 

route is extracted from the dataset if available. This route is displayed as a polyline overlay, ensuring it 

stands out from the rest of the data points. The safe route is represented using cylindrical markers in blue, 

guiding users toward the most secure pathway within the mapped environment.  

 

The visualization seamlessly integrates hazard analysis with route optimization for pre-mapped routes, 

helping users navigate efficiently while avoiding potential risks. 

Figure 24 Pre-Mapped Route Visualization – Hazard and Safe Route Analysis 
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7.6 Notifications – Hazard Alerts 

The flutter_local_notifications package [23] is used in the app to handle alert notifications effectively. First, 

it initializes the notification settings for both Android and iOS, ensuring platform-specific configurations 

such as categories and actions for iOS and high-priority settings for Android. The app requests necessary 

permissions for sending notifications, including alert, badge, and sound permissions for iOS/macOS and 

runtime notification permissions for Android. When the app is launched, it checks whether notifications are 

enabled and prompts the user to allow them if needed. Notifications are then handled in both foreground and 

background states, ensuring seamless interaction with users when alerts are received. Additionally, the app 

defines custom notification details, such as priority and importance levels, to ensure timely and prominent 

alerts for critical warnings. 

For hazard alerts related to user-selected routes, the app utilizes real-time location updates received from the 

Raspberry Pi 4 (RPi4). When a user selects a map and enables notifications by clicking the notification icon, 

the app saves that map data to compare with real time location data. The app compares the real-time 

coordinates received from RPi with pre-mapped predicted locations stored in the selected map, filtering 

points with a prediction value greater than 1. The distance between the real time position and these high-risk 

Figure 25 Hazard Alerts Display for pre-mapped routes 
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points is continuously calculated. If the boat comes within 20 meters of any hazardous location, an alert 

notification is triggered, displaying a warning message with the corresponding prediction value. Users 

receive immediate alerts about potential dangers on their route, allowing them to take necessary precautions 

in time. 

8 Software Integration on MCU, States and Data Flow 

The combined script running on the Raspberry Pi 4 (RPi4) is designed as a multi-threaded, state-driven 

system that efficiently manages depth monitoring, data synchronization, hazard prediction, and routing 

algorithms. The system consists of multiple threads working in parallel to ensure real-time operation, 

uninterrupted communication, and seamless data processing. 

8.1 Multi-threading Structure 

1. Wi-Fi Thread: This thread is responsible for handling network connectivity, ensuring that the 

device connects to a Wi-Fi network whenever available. It checks RF-kill status, retries connections 

when necessary, and sets a Boolean flag indicating Wi-Fi status. If Wi-Fi is available, it facilitates 

MQTT communication with AWS IoT Core. 

2. State Machine Thread: The core thread that manages different states, including reading depth data 

from the Ping2 sensor, retrieving GPS/geolocation data (via Wi-Fi-based geolocation indoors or 

direct GPS readings outdoors), and synchronizing this information into a structured JSON message. 

The state machine reacts to commands from the mobile app—START, STOP, and UPLOAD—which 

control the data collection process. 

3. Synchronizer Thread: This thread is responsible for handling data transmission and local storage. It 

fetches JSON messages from a queue and either transmits them over MQTT (if Wi-Fi is available) or 

via Bluetooth (if Wi-Fi is unavailable). It also logs data locally in a list and periodically writes it to a 

file in the /home/g9pi/Downloads/readyToUpload directory. 

4. Heartbeat Thread: This thread sends periodic (every 60 seconds) updates to AWS IoT Core, 

ensuring that the system remains connected to AWS and that mobile app users are aware of the 

device’s status. 
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5. Bluetooth Handling Thread (BLE Socket Server): A Unix socket server that works with 

qtble_server to establish Bluetooth Low Energy (BLE) communication when Wi-Fi is unavailable. It 

listens for device control commands (START, STOP, UPLOAD) and transmits real-time depth 

monitoring data to the mobile app using a subscribed characteristic ID. 

8.2 State Management and Data Flow 

1. IDLE State: 

o The system remains in the IDLE state when it is not actively collecting data. 

o It waits for a START command from the mobile app via Bluetooth (BLE). 

o When the START command is received, the system moves to the DATA COLLECTION state. 

 

2. DATA COLLECTION State: 

o The system starts collecting data by starting the state machine thread: 

▪ READ DEPTH: Retrieves depth readings from the Ping2 sensor. 

▪ READ GPS: Retrieves GPS coordinates using Wi-Fi-based geolocation (indoors) or 

direct GPS readings (outdoors). 

▪ SYNC: Creates JSON messages containing timestamp, distance, confidence, latitude, 

longitude and accuracy. 

o The depth and GPS data are stored in a buffer and synchronizer thread checks the queue 

continuously and transmit data real time to the mobile app: 

▪ Via Wi-Fi: If connected, data is published using MQTT to AWS IoT Core. 

▪ Via Bluetooth: If Wi-Fi is unavailable, data is sent to the mobile app over BLE. 

Figure 26 State Machine for collecting and syncing data 
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o The system remains in this state until a STOP command is received 

 

3. DATA PROCESSING State: 

o When the STOP command is issued, the buffered data is saved locally in the 

/home/g9pi/Downloads/readyToUpload directory. 

o The pathMapping_HazardPrediction.py script runs in parallel to process this stored data. 

o The Hazard Prediction Process includes: 

▪ Downloading the latest hazard differentiation model from AWS S3. 

▪ Loading the model using joblib and applying it to predict hazard levels. 

Figure 27 Flow of the Synchronizer thread to get data and communicate to App 
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▪ The process_file() function validates and processes each JSON file, ensuring that 

unprocessed files (without PathMap_Prediction_Completed in their name) are 

analyzed. 

▪ Hazard levels are predicted using predict_entry(), and the results are appended to the 

JSON file. 

o The Safe Route Calculation Process includes: 

▪ Normalizing data, interpolating depth values, and generating a grid of coordinates. 

▪ Running the findRoute() algorithm to determine the safest path. 

▪ The computed route is added to the JSON data, and the updated file is saved with a 

PathMap_Prediction_Completed prefix. 

▪ The original unprocessed file is deleted to avoid redundant processing. 

 
 

4. UPLOAD State: 

o When the UPLOAD command is triggered, all processed files in the 

/home/g9pi/Downloads/readyToUpload directory are uploaded to AWS S3. 

o The mobile app can then refresh to fetch the latest files from the cloud. 

o The app displays: 

▪ Mapped zones with color-coded markers. 

▪ Risk areas based on hazard predictions. 

▪ The computed safe route. 

o The system returns to the IDLE state, awaiting the next command. 

Figure 28  Receive incoming device control command and handle actions 
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8.3 Wi-Fi and Bluetooth Handling 

The system seamlessly switches between Wi-Fi and Bluetooth based on network availability. When Wi-Fi is 

connected, data is transmitted via MQTT to AWS IoT Core. If Wi-Fi is unavailable, the BLE server 

activates, allowing the mobile app to receive real-time depth monitoring data over Bluetooth. The Unix 

socket facilitates communication between the main thread and qtble_server, enabling command exchange via 

BLE. 

8.4 Local Storage and Cloud Uploads 

All depth and GPS data collected during monitoring are saved locally in the 

/home/g9pi/Downloads/readyToUpload directory when STOP command is received. When the UPLOAD 

command is issued, these files are sent to AWS S3, where the mobile app can retrieve them for visualization. 

If Wi-Fi is unavailable, files remain on the RPi4 until connectivity is restored. 

8.5 Running Algorithms for Hazard Prediction and Path Mapping 

  

 

Figure 29 Processing Local File using Hazard Diff and Path Mapping Alg 
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• The Path Mapping and Hazard Prediction script continuously monitors the 

/home/g9pi/Downloads/readyToUpload directory for new JSON files containing depth and GPS 

data. When a new file is detected: 

o It loads the latest hazard differentiation model from AWS S3 using joblib and applies it to 

predict hazard levels. 

o The hazard differentiation predict function evaluates each data entry and classifies hazards 

based on sensor depth readings and assigns a prediction level for each entry. 

o The Interpolation and Routing Algorithm determines a safe route from start to endpoint while 

avoiding hazardous areas using the predictions resulted from hazard differentiation 

prediction. 

o The processed JSON file is saved with the PathMap_Prediction_Completed prefix, and the 

original file is deleted to prevent reprocessing. 

 

8.6 Mobile App Integration 

• Users can receive real-time data via Wi-Fi or BLE.  

• The app allows sending START, STOP, and UPLOAD commands via BLE. 

• Pre-mapped files can be downloaded from the cloud and displayed with hazard zones and safe 

routes. 

• Notifications alert users when they are approaching a hazardous area within 20m. 

 

8.7 Running the Scripts on Rpi4 

Added the following files on rc.local file to run the scripts automatically as soon as RPi4 is turned on. This 

file can be accessed on RPi4 using command sudo nano /etc/rc.local: 

• RPi4_Combined Script: handles wifi connection, bluetooth connection, listens for device control 

command from user by ble to START reading sensor, gps and sync, STOP reading and save the file 

locally, UPLOAD to upload the file to AWS S3 and handles real time depth monitoring via MQTT 

over Wi-Fi (when available) or BLE. 

• BLE Server: starts the bluetooth server, advertises services, handles connections, listens for 

commands and handle reconnections. 

• Algorithms Running Script:  start the script to run the hazard differentiation algorithm to update with 

prediction values and path Mapping algorithm to suggest a safe route and write the results to file 

with update filename. 
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This integrated system ensures continuous depth monitoring, real-time hazard prediction, and seamless 

communication via multi-threading. It dynamically switches between Wi-Fi and Bluetooth, efficiently logs 

and synchronizes data, and processes hazard mapping to provide users with safe navigation routes. The 

combination of MQTT for remote monitoring, BLE for local communication, and cloud-based analytics 

makes this an advanced, reliable, and robust depth monitoring and hazard prediction system. This integrated 

system of data collection, hazard prediction, and cloud synchronization provides real-time, efficient hazard 

mapping and navigation support, guaranteeing seamless operation and continuous communication throughout 

the entire process. Users can receive the real time data both by Wi-Fi (for local and remote) and BLE (local) 

and view marker on App, control the system by sending Commands from App via BLE, get the pre-mapped 

files from cloud, view the map with color coded markers, safe route, download the map for later use, urn on 

notifications (hazard alerts while using the map) to get alert for approaching hazard 20m before. 

 

9 Systems Integration, Testing and Validation 

Finally, we integrated a USB-UART converter to enable seamless UART data transmission from the PING2 

sensor. To enhance system functionality, we implemented Wi-Fi-based geolocation and GPS simulation, 

allowing for accurate indoor system testing. Additionally, data synchronization was established on our 

primary microcontroller, the Raspberry Pi 4 (RPi4), ensuring smooth data handling across various hardware 

components. As part of the final hardware integration, all devices are powered by a 5V power bank, which 

provides stable voltage to maintain consistent operation. 

The Raspberry Pi 4 (RPi4) runs a multi-threaded, state-driven system for real-time depth monitoring, hazard 

prediction, and route calculation. It efficiently manages Wi-Fi connectivity, Bluetooth communication, data 

synchronization, and cloud integration through multiple parallel threads. The Wi-Fi thread ensures network 

connectivity and facilitates MQTT-based communication with AWS IoT Core, while the Bluetooth Handling 

Thread enables BLE communication when Wi-Fi is unavailable. The State Machine Thread controls core 

functions, including reading depth data from the Ping2 sensor, obtaining GPS coordinates, and synchronizing 

information into structured JSON messages. The Synchronizer Thread handles real-time data transmission 

over MQTT or BLE and logs data locally for further processing, while a Heartbeat Thread sends periodic 

updates to AWS IoT Core to maintain system visibility. 

The system transitions through different states which are sent by the user on App to RPi4 using BLE: IDLE, 

where it waits for a START command from the mobile app; DATA COLLECTION, where it gathers depth 

and GPS data and transmits it in real time via MQTT or BLE; DATA PROCESSING on receiving STOP 
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command, where it saved the data mapped in a local file which triggers to run hazard prediction and safe 

route mapping using a machine learning model downloaded from AWS S3, applying hazard differentiation 

and routing algorithms before storing processed data with a "PathMap_Prediction_Completed" prefix; and 

UPLOAD, where processed files are transferred to AWS S3 for retrieval by the mobile app, which visualizes 

hazard zones and computed safe routes. 

AWS Cloud Services ensure seamless data management and retrieval, with AWS IoT Core serving as the 

primary communication hub for real-time data exchange, AWS S3 securely storing mapped route data, and 

AWS Amplify optimizing data access and user interaction. Python scripts running on the RPi4 process depth 

and GPS data, synchronizing it with AWS S3 via API calls, while a Flutter-based mobile app fetches and 

visualizes the data through Amplify API calls, offering users an intuitive interface for monitoring depth 

readings, viewing hazard zones, and navigating safe routes in real time. 

For real-time communication, the system leverages MQTT over Wi-Fi, with AWS IoT Core acting as the 

MQTT broker to ensure reliable, low-latency communication between the RPi4 and the mobile app. If Wi-Fi 

is unavailable, the system dynamically switches to Bluetooth Low Energy (BLE), enabling continuous data 

transmission to the mobile app. This intelligent network switching ensures uninterrupted operation, allowing 

users to receive real-time hazard updates and depth monitoring data regardless of connectivity conditions. 

The integration of AWS Cloud Services enhances efficiency, enabling seamless communication, scalable 

data management, and real-time hazard mapping, making this a robust and reliable depth monitoring and 

hazard prediction system. 

9.1 Testing Methodology 

In this section, we provided a detailed explanation of the testing methodology employed for various 

purposes, including functionality, stability, and performance evaluations. We outline the specific objectives 

of each test, the step-by-step approach we followed, and the tools and techniques used to ensure accurate 

results. Additionally, we discuss the rationale behind our testing procedures and how they contributed to 

refining the overall design and performance of our system. 

 

9.1.1 Swimming Pool Testing 

The primary objective of testing in the university swimming pool was to evaluate the accuracy of the 

ultrasonic sensor in measuring depth when integrated with the RPi4. All the hardware components, including 

the RPi4, Ping2 sensor, Arduino Uno R3, and power bank—were fastened together using zip ties to ensure a 
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secure setup. These components were placed inside a box container mounted on top of the prototype boat. 

The results of this test are discussed in detail in the system validation section. 

 

 

Once we confirmed that our system integration could reliably provide accurate depth measurements, we 

proceeded to test its response to sudden changes in depth. To simulate this scenario, we placed a calibrated 

table inside the pool and maneuvered our prototype boat over it. This setup allowed us to observe how the 

system reacted to abrupt depth variations. The results and analysis of this experiment are also presented in 

the system validation section. 

Additionally, we intended to test the system in a real-world river 

or lake environment. However, due to unfavorable weather 

conditions outside the university campus, field testing was not 

feasible during the course timespan. As an alternative, we 

purchased a plastic testbed container, which allowed us to 

simulate natural conditions by adding sand, mud, and rocks. With 

assistance from our technical lead, Gordon, we conducted similar 

tests in this controlled environment. However, the results were 

suboptimal due to reflections from the container’s walls, which 

interfered with sensor readings.  

Despite this challenge, the experiment provided valuable 

insights that we later applied to improve our testing 

approach in subsequent trials. 

Figure 30 Testing sudden change in the depth  Figure 31 Initial Swimming Pool Testing 

Figure 32 Test bed testing 
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9.1.2 Civil Lab testing 

After conducting tests in the plastic test bed, we realized it was not the most suitable environment for our 

experiment, as the confined space and reflective surfaces interfered with sensor accuracy. Given these 

challenges, we sought alternative testing options. Following a suggestion from Gordon, we reached out to 

Alex Wall, in-charge of the Civil Hydraulics Laboratory, for his assistance in testing our system integration. 

The controlled environment of the civil water flume closely resembled a natural riverbed, providing a more 

realistic setting for our tests. The flume featured a continuous water flow (manually adjustable) from one side 

to simulate different conditions. Additionally, with a maximum depth of 60 cm, it was well within the 

operational range of our sensor specifications. Moreover, we were permitted to place calibrated bricks inside 

the flume, allowing us to refine our system hazard differentiation feature by simulating underwater obstacles.  

 

These improved testing conditions helped us overcome the limitations of the plastic test bed, enabling us to 

obtain more reliable and accurate results. The enhanced setup allowed for a more thorough evaluation of our 

system's performance in real-world scenarios, ultimately contributing to the refinement and optimization of 

our prototype. 

9.2 System Validation  

This section details our validation approach and experimental results for ensuring that the IoT Lake/River 

Real-time Depth Monitoring System performs reliably across different environments that were accessible to 

us during the design and testing process. Our validation process is divided into controlled tests in a 

swimming pool, custom test bed container and in a Civil Hydraulics Lab water flume, and rigorous 

specifications validation to confirm system performance metrics. 

 

Figure 33 Placed an arbitrary block inside the water flume 
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9.2.1 Swimming Pool Testing  

In our initial validation, we used a swimming pool environment to evaluate sensor accuracy and 

communication performance. This test enabled us to verify that our system could accurately measure depth 

and detect obstacles, using a controlled setting where interference from sonar reflections off hard pool walls 

could be observed. Although the swimming pool provided a stable water surface, it had limitations in 

simulating the diverse conditions found in natural water bodies, prompting further testing in a more dynamic 

environment. 

 

Observations from our tests revealed that when the Raspberry Pi is connected to Wi-Fi, location data via Wi-

Fi geolocation is received at intervals of approximately 7–8 seconds. In contrast, when Wi-Fi is unavailable 

and GPS simulation is used via Bluetooth, the intervals shorten to 3–4 seconds. This suggests that the Wi-Fi 

geolocation process adds an average delay of about 4 seconds. However, in the real-word deployment, our 

device would be used and tested on rivers or lakes which would enable the GPS device to work with full 

functionality outdoor. 

 

During shallow swimming pool tests, after adjusting for the sensor’s vertical dimension (41 mm), the 

expected depth range was 1.17–1.41 m, and the measured depths ranged from 1.185 m to 1.462 m, resulting 

Figure 34 Civil Lab System testing 
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in an average percentage error of roughly 1.28% to 3.69%. Tests in a deep swimming pool, where the 

expected depth range was 2.25–3.62 m (after subtracting the sensor’s 0.04 m offset), yielded measured 

depths of 2.202–3.699 m with an average error of about 2.13–2.18%. Furthermore, tests that introduced an 

obstacle (an immersed table) in a shallow pool showed a drop in the average measured depth—from 1317.5 

mm without the obstacle to 811.29 mm with it—indicating an approximate table height of 506.21 mm which 

was very close to the accurate measurement. 

9.2.2 Custom Test Bed Container  

We have used a large container to prepare a custom testbed to introduce more diversity to our testing 

scenarios. The tests conducted on it exposed physical limitations in our testbed. Although the container 

initially satisfied the sensor’s minimum depth requirement of 30 cm according to the manufacturer, the 

bending of the container walls under water pressure reduced the effective depth to about 21 cm, which 

Figure 35 Validation on the Datasets obtained from Swimming Pool testing 
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adversely affected the readings. Additionally, multi-reflection of sonar waves from the container walls 

introduced fluctuations in the depth values. We proposed reinforcing the container walls by placing heavy 

objects along the wider sides to prevent bending, which should allow the container to reach its full depth 

potential and reduce reflective interference. We have also narrowed down the angle of sonar wave beams to 

reduce interference from walls. Fortunately, we were able to conduct our tests in a river-model apparatus 

which was available in Civil Hydraulics Laboratory, which eliminated all the major limitations of our custom 

testbed container. 

 

9.2.3 Civil Hydraulics Lab Water Flume Testing 

The Hydraulics Lab’s water flume provided a controlled yet dynamic environment to simulate riverine 

conditions. The flume’s adjustable flow rate and modular brick obstacles enabled rigorous validation of 

hazard detection under turbulence. In our initial scenario, the tank was filled with water to a manually 

measured depth of 61 cm. Using our system, we collected real-time data via our mobile app, which was 

directly uploaded to the cloud. During this test, the sensor’s depth readings were processed to include 

additional parameters such as the original measured depth and calculated range resolution; analysis of the 

plotted data revealed an average error of approximately 7 mm, confirming reliable sensor accuracy despite 

the challenging conditions. 

Subsequently, we tested the system with obstacles placed in the water. We first arranged submerged bricks in 

fixed positions—with measured heights of 190.50 mm, 87.31 mm, and different shapes such as half 

cylinders—and then in random configurations to increase the complexity of the dataset. These tests provided 

valuable information regarding the response of the system when encountering physical objects or hazards, 

and the collected data was subsequently used for training our machine learning models. A further testing 

scenario involved initiating the depth measurement process (using the START command) while gradually 

filling the tank to observe the minimum depth at which the device could reliably register a 100% confidence 

reading; the device consistently recorded accurate values once the depth reached 0.379 m. On a later 

occasion, we conducted additional tests by placing different sized bricks to gather more varied data for model 

training.  

Figure 36 Measuring dimension of the used bricks 
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These comprehensive tests revealed several key insights. Firstly, the accuracy of the Ping2 transducer is 

confirmed with an average error of less than 1 cm, although our observations indicate that even a 1 cm 

difference in the effective water depth can be significant, particularly when ensuring that the prototype boat 

remains centrally located within the test area. The implementation of a gain setting of 2 in the sensor’s code 

helped reduce noise by focusing on stronger signals, thereby improving measurement reliability compared to 

our earlier custom testbed experiments. Moreover, the diverse scenarios—from simple depth measurement to 

obstacle detection—underscore the necessity of incorporating a variety of objects beyond just bricks to 

further refine our machine learning model for hazard differentiation.  

 

 

9.2.3 Specifications Validation 

This section provides a detailed technical validation “Placing bricks at different known locations for testing 

and ML training” of key system performance metrics, assessed during controlled lab testing. In defining our 

performance specifications, several new metrics have been added, and some have been modified based on 

our testing results and practical constraints. Our system performance metrics can be found in Project 

Specifications. 

Measuring and Validating Minimum and Maximum Depth: We validated the sensor’s accuracy by 

comparing its readings with manual measurements in controlled settings. The sensor reliably recorded a 

minimum depth of 0.379 m, confirming accurate performance in shallow water. In deep swimming pool 

tests—after adjusting for sensor mounting offsets—the sensor measured a maximum depth of 3.69 m. It 

should be noted that this maximum was limited by our testing facility, which could not simulate deeper water 

Figure 37 Validation on the Datasets obtained from the Civil Lab testing 
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conditions expected in natural lakes or rivers. Nonetheless, these results demonstrate consistent sensor 

performance within the tested range and serve as a robust proof-of-concept for our application. 

 

Real-Time Depth Monitoring Communication: In order to measure communication delay, we needed to 

make sure that the machine clock on RPi and Phone app are synced. By printing concurrent timestamps, we 

determined the calibration offset to consider in our calculation for communication delay, which is 154.37 

milliseconds. 

Table 6 Determining Clock Calibration between RPi and App 

 

 

 

 

The system’s real-time depth monitoring performance has been validated through two communication 

channels. When connected to Wi-Fi, the Raspberry Pi 4 delivers depth data to the application via MQTT at 

an average delay of approximately 0.469 seconds (see Table 8), while Bluetooth Low Energy (BLE) 

Current RPi Timestamp (ms) Current App Timestamp (ms) Calibration Offset (ms) 

1738969174996.25 1738969174805.00 191.25 

1738970271795.06 1738970271666.00 129.06 

1738970367237.74 1738970367013.00 224.74 

1738970458096.43 1738970457979.00 117.43 

1738970542385.36 1738970542276.00 109.36 

 
Average Calibration Offset (ms) 154.3680176 

Figure 38 Placing bricks at different known locations for testing and ML training 



Page 57 of 63 

 Price Faculty of 
Engineering 

communication—used in the absence of Wi-Fi—requires about 0.492 seconds (see Table 7). The target for 

real-time communication is a delay of less than 2 seconds, which has been comfortably met by both methods. 

 Table 7 Determining Real-Time Communication Delay using BLE 

 

 

 

 

 Table 8 Determining Real-Time Communication Delay using Wi-Fi and MQTT 

 

 

 

 

 

Frequency of Readings: The frequency of sensor readings, defined as the time interval between successive 

measurements and subsequent logging, is a critical performance parameter. In testing, when simulating GPS 

values, the average interval was approximately 3.14 seconds (see Table 9). When Wi-Fi geolocation was 

employed to provide location data, the interval increased to about 7.32 seconds (see Table 10). These values 

reflect the processing delays inherent in the combined script, which manages three states—reading sensor 

data, reading GPS data, and synchronizing—resulting in a cumulative delay that meets the operational design 

requirements. 

Table 9 Frequency of Readings for Simulation or Device 

RPi Timestamp at Send (ms) App Timestamp at Receive (ms) Calibration Offset + Delay (ms) 

1738891606592.37 1738891607154.00 716.00 

1738891609751.96 1738891609957.00 359.41 

1738891612881.67 1738891613164.00 436.70 

1738891616027.26 1738891616366.00 493.11 

1738891619137.13 1738891619437.00 454.24 

Average Total Communication Delay (ms) 491.8920215 

RPi Timestamp at Send (ms) App Timestamp at Receive (ms) Calibration Offset + Delay (ms) 

1738890386440.48 1738890386778.00 491.89 

1738890393626.45 1738890393934.00 461.92 

1738890400721.63 1738890401002.00 434.74 

1738890408268.30 1738890408580.00 466.07 

1738890415721.65 1738890416056.00 488.72 

Average Total Communication Delay (ms) 468.6680469 

Timestamps of RPi Readings for simulation or device (ms) Difference in Readings (ms) 

1738891606592.37 - 



Page 58 of 63 

 Price Faculty of 
Engineering 

 

 

 

 Table 10 Frequency of Readings for Wi-Fi Geolocation 

 

 

 

 

 

File Upload Speed: For data transmission, the system uploads log files—comprising JSON messages that 

include depth data and safe routing information—from the Raspberry Pi to AWS S3. Our validation tests 

measured an upload speed of approximately 27.13 kB/s, which exceeds the target upload speed of 20 kB/s. 

This metric confirms that file synchronization with the cloud is efficient, ensuring timely data availability for 

further processing and application display. 

Table 11 Determining File Upload Speed to AWS Cloud Services from RPi 

RPi Timestamp at 

Upload (ms) 

Timestamp on AWS S3 server 

when uploaded (ms) File Size (kB) Delay (ms) Speed (kB/s) 

1738895297704.40 1738895300000.00 66.5 2295.600098 28.96846017 

1738895300194.31 1738895301000.00 27.8 805.6899414 34.50458864 

1738895301609.17 1738895303000.00 24.9 1390.830078 17.90297779 

Average Upload Speed (kB/s) 27.1253422 

 

Application Response Time: The application’s performance was evaluated by two key indicators. First, the 

real-time UI updates—based on state changes and provider notifications—are achieved within 1 second, well 

under the target of 2 seconds. Second, the time required to query AWS S3, retrieve pre-mapped routes, and 

1738891609751.96 3159.59 

1738891612881.67 3129.71 

1738891616027.26 3145.59 

1738891619137.13 3109.87 

Average Difference in Readings (ms) 3136.189941 

Timestamps of RPi Readings for Wi-Fi Geolocation (ms) Difference in Readings (ms) 

1738890386440.48 - 

1738890393626.45 7185.97 

1738890400721.63 7095.18 

1738890408268.30 7546.67 

1738890415721.65 7453.35 

Average Difference in Readings (ms) 7320.29248 
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update the display in the app was measured at roughly 4.42 seconds, which is within our target of less than 5 

seconds. 

Table 12 Determining Application Response Delay 

Timestamp of when user clicks and 

request to query (ms) 

Timestamp when the list of maps is retrieved and 

showed on App (ms) 
Delay (ms) 

1738895941895.00 1738895946536.00 4641 

1738896018161.00 1738896022426.00 4265 

1738896043788.00 1738896048139.00 4351 

Average Response Delay 4419 

 

Hazard Differentiation Accuracy: Finally, the performance 

of the hazard differentiation module was validated through 

machine learning experiments. Our model, trained on data 

from controlled lab tests, achieved an accuracy of 88.89% on 

the training dataset (see Figure 38) and 91.43% on the test 

dataset (see Figure 39). These results meet our performance 

targets of over 85% during training and over 80% during 

testing, confirming the viability of the SVM-based approach 

for reliably indicating hazard severity. However, after adding 

K-fold cross validation and more dataset into our model, the 

model accuracy became 81.61% (see Figure 40) which falls 

short by a few percentage from our target accuracy. 

 

Figure 39 SVM Model Accuracy Test 

Figure 40 Model Accuracy while Training with K-fold cross validation and more dataset 

Figure 41 Model Accuracy while Testing in Laboratory 
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10 Budget 

In summary, the project exceeded the allocated budget by $69, surpassing the $600 provided by the 

department ($100 per team member for six members). The additional funds were covered through an external 

budget allocated to the team. 

Table 13 Budget 

 

1 These parts were returned after use 
 

 

  PROPOSED (including Shipping) ACTUAL (including Shipping) 

PRODUCT PART Unit Cost Quantity Total Cost Unit Cost Quantity Total Cost 

Ping2 Sonar Altimeter and Echosounder $580  1 $580.00 $578.00 1 $578.00 

Raspberry Pi4 Model B $0  1 $0.00 $0.00 1 $0.00 

Arduino UNO R3 $0  1 $0.00 $0.00 1 $0.00 

SIM (2FF,3FF,4FF) VER 4G LTE $8.98  1 $8.98 - - - 

MICROSD CARD 32GB SANDISK $21.30  1 $21.30 $0.00 1 $0.00 

MICROSD CARD MODULE FOR ARDUINO $8.33  1 $8.33 - - - 

SIM808 GPS/GPRS/GSM Arduino Shield $56  1 $56.00 - - - 

RC Boat1 $68.31  1 $68.31 $0.00 1 $0.00 

Battery $43.66  1 $43.66 $0.00 1 $0.00 

Custom PCB $35  1 $35.00 - - - 

GPS Device: YIC / GU-504GGB-USB - - - $59.11 1 $59.11 

USB_UART Converter - - - $10.18 1 $10.18 

Test Bed Container1 - - - $0.00 1 $0.00 

Subtotal $822    $647.29 

Contingency Costs +25% $205.40    

Total $1,027      $647.29 

       

Funds Available from ECE Department $600  CR     

Used ECE Department Fund $578  DR     

External Budget (Group Contribution) $69.29 DR     
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11 Future Considerations 
While significant progress has been made in developing a depth monitoring system for lakes and rivers, 

several improvements can further enhance its functionality, accuracy, and user experience. Below are key 

areas for future development: 

• Automatic Underwater Imaging and Cloud Integration: Implementing an automated underwater 

imaging system will allow for real-time image capture and cloud uploads. This enhancement will: 

o Improve model accuracy by continuously feeding high-quality underwater images into the 

system. 

o Enable real-time feedback for users via the mobile app, providing insights into underwater 

conditions. 

o Facilitate automated anomaly detection, such as detecting debris, aquatic vegetation, or 

sudden depth changes. 

• Advanced Navigation Services: Enhancing the app with smart navigation features will provide 

users with a more interactive and safer boating experience. Proposed improvements include: 

o Real-time route tracking with GPS guidance to assist users in navigating through lakes and 

rivers efficiently. 

o Hazard alerts based on time intervals (e.g., 5, 10, 20 minutes ahead) or proximity (e.g., 5, 10, 

20 meters ahead). 

o Location-based recommendations for safer or optimal routes based on environmental 

conditions. 

• Speed Sensor Integration for High-Frequency Data Collection: Adding a speed sensor to the 

system will improve the accuracy of boat movement tracking. Benefits include: 

o Collection of high-frequency speed data optimized for lake and river environments. 

o Enhanced data precision for better correlation between speed, depth variations, and 

navigation safety. 

o Potential for speed-based adaptive navigation recommendations. 

• Improved Data Visualization: Currently, depth and location data are displayed as markers on a 

map. Future improvements could involve: 

o Using interpolation techniques to create a continuous raster representation of depth data. 

o Displaying this raster as a 3D surface plot or heatmap for better visualization and analysis. 

o Improving user experience by making data more intuitive and visually engaging. 

• Alternative Routing Algorithms: Optimizing the current routing algorithm will enhance navigation 

efficiency. Future developments can include: 
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o Investigating alternative routing algorithms like A* or Dijkstra’s algorithm which may 

provide better routes for an algorithm speed trade-off. 

o Customizable routing options based on user preferences (e.g., shortest route, safest route, 

scenic route). 

o Adaptive routing that dynamically updates based on real-time environmental changes. 

• Data Merging for Multiple Recording Sessions: To improve the accuracy and usability of depth 

maps, future updates should allow for: 

o Merging data from multiple recording sessions to create more comprehensive depth 

information for the same lake or river. 

o Synchronizing past and current data to detect long-term depth variations and environmental 

changes. 

o Implementing an automated data-cleaning process to filter out inconsistencies or anomalies. 

• Map Search Functionality: Enhancing the app with a search feature will improve usability and 

accessibility by allowing users to: 

o Search for specific locations, routes, or depth readings. 

o Bookmark frequently visited locations for easy access. 

o Integrate filters to refine search results based on parameters such as depth range, speed 

limits, or hazard zones. 

• Hazard Differentiation Dataset: Expanding the dataset to include various hazard types will make 

the system more robust. Improvements include: 

o Differentiating hazards such as submerged obstacles, strong currents, and shallow areas. 

o Training the system to recognize and categorize hazards based on real-world testing data. 

o Providing detailed hazard descriptions and severity levels in the app for better decision-

making. 

• Real-World Testing and Model Validation: To ensure system accuracy and reliability, further real-

world testing is essential. This includes: 

o Conducting field tests in diverse lake and river environments beyond controlled indoor 

simulations. 

o Validating model predictions with real-environment depth readings. 

o Gathering additional real-world data to improve machine learning model training and 

generalization. 

By implementing these improvements, the system can evolve into a more advanced, reliable, and user-

friendly tool for navigation, depth monitoring, and hazard detection in aquatic environments. 
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12 Conclusion  

In conclusion, our "Design and Implementation of IoT Lake/River Real-time Depth Monitoring System" 

project has successfully integrated hardware, firmware, cloud services, and mobile application components 

into a cohesive system. Through extensive testing in varied environments—from controlled swimming pool 

experiments using custom test beds to dynamic water flume tests in the Civil Lab—we have validated critical 

performance metrics, including accurate depth measurement (with minimal error), robust real-time 

communication via both Wi-Fi (MQTT) and Bluetooth Low Energy, and effective data integration for path 

mapping and hazard differentiation. The experimental results and refined system validations confirm that our 

design meets the project specifications and provides a reliable platform for real-time bathymetric surveying 

and hazard detection. 

The iterative testing phases—spanning controlled swimming pools, custom test beds, and the Hydraulics 

Lab’s river-model flume—provided critical insights into environmental challenges such as acoustic 

reflections, turbidity, and GPS signal loss. Key innovations, including timestamp synchronization via fixed-

ratio pairing, SVM-based hazard severity classification, and cloud-assisted model updates, addressed these 

challenges while maintaining compliance with IoT best practices. The system’s adaptability was further 

proven through its ability to handle asynchronous sensor data, dynamic obstacle configurations, and real-time 

user interactions via the Flutter-based mobile app. These accomplishments underscore the project’s 

alignment with academic research in embedded systems and industry standards for marine IoT applications. 

Looking ahead, this work lays a foundation for expanding the system’s capabilities through integration with 

autonomous vessels, multi-sensors and partnerships with environmental agencies for large-scale bathymetric 

mapping. Future iterations can focus on enhancing obstacle diversity in training datasets, refining edge-AI 

latency, and improving energy efficiency for prolonged deployments. By bridging the gap between 

theoretical machine learning and practical IoT deployment, this project not only enhances boater safety but 

also contributes to broader efforts in sustainable waterway management and smart marine infrastructure. 
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Appendix A Technical Details of Ping2 Sensor 
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Appendix B Bluetooth Communication Protocol 
There are two versions of Bluetooth: Bluetooth classic and Bluetooth Low Energy (BLE). 

Bluetooth Classic 

• Reliable communication with high data rate (1Mbps to 3Mbps) 

• 2.402 - 2.480 GHz band 

• 79 channels with a frequency width of 1 MHz 

• like serial connection like UART 

• Used for continuous communication like audio streaming and data transfer 

BLE 

• Designed for low power consumption at the expense of data rate by only transmitting 

data intermittently (125Kbps to 2Mbps) 

• 2.402 - 2.480 GHz band 

• 40 channels with a frequency width of 2 MHz 

• like client/server connection 

• Used for everything including audio streaming and data transfer 

• Additional features like positioning and multiple communication topologies 

For our project, we used BLE since our device is battery powered, therefore having low power 

consumption is beneficial. Also, we do not need a high data rate. Lastly, BLE is the most 

compatible version of Bluetooth. iOS devices exclusively use BLE. 

There are two types of BLE devices: peripherals and centrals. A peripheral can handle many 

centrals and a central can connect to many peripherals. 

Peripheral Device 

Peripheral devices are usually battery powered devices like headphones, smart watches, or 

even smart bulbs. They act as severs in a client/server connection. Peripherals advertise their 

services to nearby devices. 

Central Device 

Central devices are usually more powerful devices like smart phones or laptops. They act as 

clients in a client/server connection. Central devices scan for nearby Bluetooth devices and 

the services they offer. They initiate a connection between the two devices. 

Once a connection is established between these devices, a Generic Attribute Profile (GATT) is used 

to govern the data exchange. A GATT is a data structure made of a hierarchy of attributes listed 
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below. Each attribute can have a standardized 16-bit UUID defined by the Bluetooth SIG group or a 

custom 128-bit UUID. 

Service Attribute 

A service attribute is a service offered by a device. A device can have a standardized service 

that is registered with the Bluetooth SIG group, like the Battery Service. It can also have 

custom services. A device can offer multiple services. 

Characteristic Attribute 

A characteristic attribute is a characteristic offered by a service. The characteristic attribute 

contains the actual data value that is transferred between devices. A service can have a 

standardized characteristic that is registered with the Bluetooth SIG group, like Battery 

Level, Battery Power State, and/or Battery Level State. It can also have custom 

characteristics. A service can offer multiple characteristics. 

Descriptor Attribute 

A descriptor attribute is a descriptor that belongs to a characteristic. A characteristic can 

have a standardized descriptor that is registered with the Bluetooth SIG group, like 

Characteristic User Description and/or Client Characteristic Configuration. It can also have 

custom descriptors. A characteristic can have multiple descriptors. 

These different types of attributes are combined to make an attribute table in a GATT server. The 

GATT server advertises its services. When a device connects, they can see the attribute table and 

exchange data. 
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Appendix C RBF Interpolant Calculation 
Radial Basis Function (RBF) interpolation uses a kernel function to determine the weight of each 

sample based on distance. There are many kernel functions however the one we used is the gaussian 

kernel. The equation for the kernel is shown below. Gaussian kernels decay as distance between the 

two vectors increases. 

𝐾(𝑥1⃗⃗⃗⃗ , 𝑥2⃗⃗⃗⃗ ) = 𝑒
−
|𝑥1⃗⃗ ⃗⃗  −𝑥2⃗⃗ ⃗⃗  |2

μ  

The equation to interpolate a new point is shown below. It takes a list of samples points and 

calculates the interpolant by summing the contributions of each sample point on the new point. For 

each sample, it first determines the weight of the sample based on the distance between the sample 

vector and the new vector using the equation above. Then it is multiplied by another weight for the 

sample. The multiplication of the two weights results in the contribution of each sample on the 

interpolant. 

x is the vector for the new point 

xi is the list of sample vectors 

wi is a weight vector for each sample point 

f(x) is the interpolant 

𝑓(𝑥 ) = ∑𝑤𝑖

𝑁

𝑖=1

𝐾(𝑥𝑖⃗⃗  ⃗, 𝑥 ) = ∑𝑤𝑖

𝑁

𝑖=1

𝑒
−
|𝑥𝑖⃗⃗  ⃗−𝑥 |2

μ  

Now that we know how the equation works we can interpolate new points, however we do not 

know the vector wi. To find wi we must use the depth value of the sample point as f(x). Then using 

the equation above, we solve for wi. Once all wi are known, we can use the equation above to 

interpolate new points. 

The calculation of wi for all samples leads to a system of equations. Therefore, the problem can be 

solved with matrices as shown below. 

d is the vector of depth values for each sample 

w is the vector of weight values for each sample 

G is the matrix of gaussian kernel values for each sample 
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𝑑 = �⃗⃗� 𝐺 

�⃗⃗� = 𝑑 𝐺−1 

 

 

After the sample weight are determined new points can be interpolated. The matrix equations are 

shown below. 

x is the vector for the new point 

w is the vector of weight values for each sample 

k is the vector of gaussian kernel values for each sample 

f(x) is the interpolant 

𝑓(𝑥 ) = �⃗⃗� �⃗� −1
 

 

# Calculate Weights from x, y, and z samples points 
# mu: constant 0.03 
# sample_coors  (n,2): list of coors from readings 
# z    (n,1): list of depths from readings 
def calcWeights(sample_coors, z, mu): 
 # sample_mat (n,2)*(2,n) = (n,n) 
 sample_mat = np.matmul(sample_coors, sample_coors.transpose()) 
 # sample_diag (n,1) 
 sample_diag = np.diagonal(sample_mat) 
 # X_sqr, Y_sqr (n,n) 
 X_sqr, Y_sqr = np.meshgrid(sample_diag, sample_diag) 
 # gramMatrix (n,n) 
 gramMatrix = np.exp(-1/mu * (X_sqr - 2*sample_mat + Y_sqr)) 
 # weights (n,1) 
 weights = np.matmul(np.linalg.pinv(gramMatrix), z) 
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 return weights 

Code snippet for weight calculation 

 

# Interpolate z values from grid of x and y points 
# mu: constant 0.03 
# X    (m,p): longitude matrix 
# Y    (m,p): latitude matrix 
# w    (n,1): weights 
# sample_coors  (n,2): list of coors from readings 
def interpolate(X, Y, w, sample_coors, mu): 
 # interp_coors (m x p, 2) 
 interp_coors = np.array([X.flatten()[:], Y.flatten()[:]]).transpose() 
 # sample_mat (n,2)*(2,n) = (n,n) 
 sample_mat = np.matmul(sample_coors, sample_coors.transpose()) 
 # sample_diag (n,1) 
 sample_diag = np.diagonal(sample_mat) 
 # interp_mat (m x p, 2)*(m x p, n) = (m x p, m x p) 
 interp_mat = np.matmul(interp_coors, interp_coors.transpose()) 
 # interp_diag (m x p, 1) 
 interp_diag = np.diagonal(interp_mat) 
 # Y_sqr, X_sqr (n, m x p) 
 Y_sqr, X_sqr = np.meshgrid(interp_diag, sample_diag) 
 w = w.reshape((1,w.size)) 
 # gramMatrix (n, m x p) 
 gramMatrix = np.exp(-1/mu * (X_sqr - 2*np.matmul(sample_coors, 
interp_coors.transpose()) + Y_sqr)) 
 # z_vals (1, n)*(n, m x p) = (1, m x p) which is reshaped to (m,p) 
 z_vals = np.matmul(w, gramMatrix).reshape(X.shape) 
 
 return z_vals 

Code snippet for interpolation 
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Appendix D RBF Parameter Optimization 

𝐾(𝑥1⃗⃗⃗⃗ , 𝑥2⃗⃗⃗⃗ ) = 𝑒
−
|𝑥1⃗⃗ ⃗⃗  −𝑥2⃗⃗ ⃗⃗  |2

μ  
The RBF interpolation algorithm uses a Gaussian kernel. This kernel has one tuneable parameter, , 

which is shown in the denominator of the exponential in the equation above. Adjusting this 

parameter affects the quality of the interpolation. 

  
 = 0.05  = 20 

When the parameter is set to a low value, the Gaussian kernel decays faster. When  is set low, the 

new interpolated values pass closely through the sample points. When  is set high, the new 

interpolated values get flattened. The data is smoothened since the kernel decays slower. This is an 

undesirable trait for our use, so the parameter should be set low. 

Another case to consider is when the domain of the sample space varies. So far, all the plots shown 

of Franke's Function have been in the same domain. The domain of x and y is [0,1]. 
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 = 0.05, x&y domain = [-1,1]  = 0.05, x&y domain = [-2,2]  = 0.05, x&y domain = [-3,3] 

   

 = 0.35, x&y domain = [-1,1]  = 0.8, x&y domain = [-2,2]  = 1.5, x&y domain = [-3,3] 

The plots above show a new testing surface with various domains. In the top row,  is kept constant 

at 0.05, while the domain increases. We can see that as domain increases, the interpolation becomes 

worse. In the bottom row,  is adjusted to a value that minimizes error. We can see that as domain 

increases, mu increases, and the interpolation is closer to the original surface. This means that  

must be scaled with the domain. 

After considering the cases shown above, the optimal value of  was found. First, we used gradient 

descent to find the optimal value of  where the domain of x and y is [0,1]. The initial value of  

was set to 0.1 since low values of  are desirable. The mean square loss was calculated by taking 

the difference between the actual surface and interpolated surface. Then the difference was summed 

up and the mean of the entire matrix was taken. This was repeated for 100 iterations. The optimal 

value was found to be around  = 0.03. 

Next, to address the issue in the second case, the domain of the sample space was scaled so that the 

domain of x and y is [0,1]. This was done by finding the minimum and maximum values of the 

samples. Using those values, the samples were translated to coordinates (0,0). Then, the samples 

were normalized to a value between 0 and 1. Once the interpolation is complete, the samples were 

converted back to the original sample space using those values. 

The results of the adjustments are shown in the table below.  was kept constant at 0.03, even 

though the domain was increasing. 
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x&y domain = [-1,1] x&y domain = [-3,3] x&y domain = [-5,5] 

The interpolation method works as needed. It does struggle when the surface rapidly changes, 

however a surface like that is not likely to be recorded on lakes and rivers. In the table below, the 

surface is very jagged. This emulates some randomness in depth. The interpolation handles this 

randomness well and smoothens the surface. 

  

x&y domain = [-10,10] x&y domain = [-10,10] TOP VIEW 
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Appendix E RPi4_Combined Script 
• The code is available on GitHub: https://github.com/sukhmeet468/G09-

CapstoneProject/blob/g9capstone_app/RPi4_Scripts/V1_RPi4_CombinedScript.py 

Appendix F BLE Server Script 
• The code is available on GitHub: https://github.com/sukhmeet468/G09-

CapstoneProject/blob/g9capstone_app/RPi4_Scripts/qtble_server.py 

Appendix G Algorithms Running Script 
• The code is available on GitHub: https://github.com/sukhmeet468/G09-

CapstoneProject/blob/g9capstone_app/RPi4_Scripts/pathMapping_HazardPredictio
n.py 

Appendix H Application (Flutter) 
• The app is on the GitHub repository: https://github.com/sukhmeet468/G09-

CapstoneProject.git 

Appendix I Testing Videos and Images 
• A file with Testing video and images was made and publicly available at: 

https://github.com/sukhmeet468/G09-
CapstoneProject/blob/g9capstone_app/Testing%20Videos.md 
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